[image: image1.emf]
Sierra Studios Confidential Document

For Internal Distribution Only

[image: image1.emf]3380 146th Place SE

Bellevue, WA 98007

(425)649-9800

Confidential Document

For Internal Distribution Only

Gabriel Knight III
The Sheep Programming Language
Author(s):
Scott Bilas
Reviewer(s):
ScottH, StevenH
Version:
1.2
Status:
Final
Last Modified:
02/25/99 12:48 PM
Note: this document changes frequently.

View electronically, Do not print!

Revision History:

6/26/98
Created
Scott Bilas

6/8/98
Initial draft preview (function reference only)
Scott Bilas

6/10/98
Added new section: Sound
Scott Bilas

6/15/98
Released build 002 –
Scott Bilas

Changed StartDialogue(), added StartDialogueX(), added CutToCameraAngle(), renamed ShowCameraAngles() to GlideToCameraAngle(), added DisableIncrementalRendering(), DisableCurrentSheepCaching(), DisableSheepCaching(), EnableIncrementalRendering(), EnableSheepCaching(), PlaySound()

6/17/98
Released build 003 –
Scott Bilas

Added SetListenGAS(), StartListenFidget(), ClearCaptionEgo(), ClearCaptionText(), SetCaptionEgo(), SetCaptionText(),ShowCameraAngle() renamed to CutToCameraAngle(), added GlideToCameraAngle(), BindDebugKey(), UnbindDebugKey(), SetShadowTypeNone(), SetShadowTypeBlobby(), SetShadowTypeModel(), new section: Models, renamed IsModelInScene() to DoesModelExist(), added DoesSceneModelExist(), DumpModelNames(), DumpSceneModelNames(), HideSceneModel(), IsSceneModelVisible(), MoveModelToAnimation() (not implemented yet), and ShowSceneModel().

6/19/98
Released build 004 –
Scott Bilas

Removed ClearCaptionEgo() (didn’t make sense any more). Added ContinueDialogue(), SetCaptionDefault(), SetCaptionVoiceOver(), SetConversation(), StartGame(), ClearConsole(), InsertConsole(), SetConsole(), Call(), DumpSheepEngine(), NukeAllSheep(), NukeSheep(), new section “Game Logic”, added DumpNouns(), and Warp(). Moved ClearFlag(), DumpFlags(), GetFlag(), and SetFlag() to Game Logic section.

6/26/98
Released build 005 –
Scott Bilas

Added DumpBuildInfo(), RefreshScreen(), ToggleDebugFlag(), DumpActiveSheepObjects(), DumpActiveSheepThreads(), DumpRawSheep(), SetRenderFlat(), SetRenderFull(), SetRenderShaded(), SetRenderWireframe(), AddCaseLogic(), CheckCase(), CommitCaseLogic(), DumpCaseCode(), GetFlagInt(), GetTopicCount(), GetTopicCountInt(), IncTopicCount(), ResetCaseLogic(), SetTopicCount(), and ReEnter().

6/30/98
Finished tutorial
Scott Bilas

7/13/98
New format (dev-only and core)
Scott Bilas

7/13/98
Released build 006 –
Scott Bilas

Added AddTemplate(), Alias(), ClearConsoleBuffer(), DisableCameraBoundaries(), DoesEgoHaveInvItem(), DoesGabeHaveInvItem(), DoesGraceHaveInvItem(), DumpInsetNames(), DumpPathFileMap(), DumpUsedFiles(), DumpUsedPaths(), EgoTakeInvItem(), EnableCameraBoundaries(), FindCommand(), GetEgoCurrentLocationCount(), GetEgoLocationCount(), GetEgoName(), GetGameVariableInt(), GetNounVerbCount(), GetNounVerbCountInt(), GetScore(), HideInset(), IncGameVariableInt(), IncNounVerbCount(), IncreaseScore(), InitEgoPosition(), IsActorAtLocation(), IsActorNear(), IsActorOffstage(), IsCurrentEgo(), IsCurrentLocation(), IsCurrentTime(), RemoveTemplate(), RescanPaths(), SetActorLocation(), SetActorOffstage(), SetActorPosition(), SetEgo(), SetEgoLocationCount(), SetGameVariableInt(), SetInvItemStatus(), SetNextEgo(), SetNounVerbCount(), SetPrevEgo(), SetScore(), ShowInset(), StopAllAnimations(), Unalias(), WasEgoEverInLocation(), WasLastLocation(), and WasLastTime().

Changed SetConversation() and StopFidget().

Made debug only: AddCaseLogic(), CallIndexedSheep(), CheckCase(), ClearCaptionText(), CommitCaseLogic(), DisableIncrementalRendering(), EnableIncrementalRendering(), ForceQuitGame(), QuitGame(), ReEnter(), RefreshScreen(), ResetCaseLogic(), SetCaptionDefault(), SetCaptionEgo(), SetCaptionText(), SetCaptionVoiceOver(), SetRenderFlat(), SetRenderFull(), SetRenderShaded(), SetRenderWireframe(), SetShadowTypeBlobby(), SetShadowTypeModel(), SetShadowTypeNone(), SetTopicCount(), StartGame(), and WalkToXZ().

Removed DebugTest(), IncTopicCount(), and MoveModelToAnimation().

7/22/98
Added DumpEgoActiveInvItem(), HideInventory(),
Scott Bilas
SetEgoActiveInvItem(), and ShowInventory().

7/27/98
Released build 007 – Added Edit(), Open(), GetChatCount(),
Scott Bilas
GetChatCountInt(), SetChatCount()

8/7/98
Released build 008 –
Scott Bilas

Added FullScanPaths(), ScreenShot(), ScreenShotX(), ShowDrivingInterface(), HidePlate(), ShowPlate(), InventoryInspect(). Changed DefaultInspect(), ReEnter(), SetLocation(), SetLocationTime(), SetTime(), Warp(), SetDebugFlag(), ClearDebugFlag(), DumpDebugFlags(), GetDebugFlag(), ToggleDebugFlag(). Also added the G-Engine debug flags to the description at the start of the “Debugging” section.

8/21/98
Released build 009 –
Scott Bilas

Added DumpAnimator(), GetTimeMultiplier(), SetSurfaceHigh(), SetSurfaceLow(), SetSurfaceNormal(), SetTimeMultiplier(), StartMorphAnimation(), StopAllMorphAnimations(), StopMorphAnimation(), UnloadAll(), UnloadAllAnimations(), UnloadAllModels(), UnloadAllMovies(), UnloadAllScenes(), UnloadAllSounds(), UnloadAllSprites(), UnloadAllTextures(), UnloadAnimation(), UnloadModel(), UnloadMovie(), UnloadScene(), UnloadSound(), UnloadSprite(), and UnloadTexture().

Also added new debug flag DisableActorBlink and support for new GEngine TrackLocks flag. Fixed the SetRenderXXX() functions so they no longer require a scene change to show the effects (in software at least, hardware always worked fine).

9/3/98
Released build 010 –
Scott Bilas

Added SetGlobalSheep(), SetTopSheep(), EndConversation(), StartMom(), StartYak(), DumpMemoryUsage(), ReportMemoryUsage(), ReportSurfaceMemoryUsage(), CallGlobalSheep(), ResetGameData(), and PlayMovie(). Modified SetIdleGAS(), SetListenGAS(), and SetTalkGAS(). Deprecated StartDialogueX().

11/2/98
Released build 011 –
Scott Bilas

Added CallGlobal(), CombineInvItems(), DisableCinematics(), DisableInterpolation(), DumpFile(), DumpModel(), EnableCinematics(), EnableInterpolation(), FullReset(), InspectCamera(), InspectObject(), IsWalkingActorNear(), PlayFullScreenMovie(), SetScene(), ShowBinocs(), ShowSidney(), StartDialogueNoFidgets(), StartMoveAnimation(), StopAllSounds(), StopSound(), TurnToModel(), WalkNear(), WalkNearModel().

Changed SetIdleGAS(), SetListenGAS(), SetTalkGAS(), StartIdleFidget(), StartListenFidget(), StartTalkFidget(), StartYak(), CheckCase(), GetNounVerbCountInt(). Replaced SetCaptionDefault(), SetCaptionEgo(), SetCaptionVoiceOver(), and SetCaptionText() with AddCaptionDefault(), AddCaptionEgo(), and AddCaptionVoiceOver(). Removed StartDialogueX().

12/7/98
Released build 012 –
Scott Bilas

Changed EndConversation() and removed InspectCamera(). Added “Construction Mode” section.

Added AddPath(), AnimEvent(), Blink(), BlinkX(), CameraBoundaryBlockModel(), CameraBoundaryUnblockModel(), ClearMood(), ContinueDialogueNoFidgets(), CreateCameraAngleGizmo(), CreateCameraAngleGizmoX(), CreatePositionGizmo(), CreatePositionGizmoX(), CutToCameraAngleX(), DisableEyeJitter(), DisableSound(), EnableEyeJitter(), EnableSound(), Expression(), EyeJitter(), GetGamma(), GetIndexedPosition(), GetPositionCount(), GetVolume(), GetVolume(), Glance(), GlanceX(), HasTopicsLeft(), HideAmbientMapGizmo(), HideCameraAngleGizmo(), HideConstruction(), HidePositionGizmo(), HideWalkerBoundaryGizmo(), InventoryUnInspect(), LookitActor(), LookitActorQuick(), LookitCameraAngle(), LookitCancel(), LookitLock(), LookitModel(), LookitModelQuick(), LookitModelQuickX(), LookitModelX(), LookitMouse(), LookitNoun(), LookitNounQuick(), LookitPlayer(), LookitPoint(), LookitUnlock(), SaveSprite(), SaveTexture(), SaveTextureX(), SetEyeOffsets(), SetGamma(), SetMood(), SetSceneViewport(), SetVolume(), SetVolume(), ShowAmbientMapGizmo(), ShowCameraAngleGizmo(), ShowConstruction(), ShowPositionGizmo(), ShowWalkerBoundaryGizmo(), TextInspectPositionGizmo(), TurnHead(), UnInspect(), ViewportInspectCameraGizmo(), ViewportInspectCameraGizmoX(), WalkerBoundaryBlockModel(), WalkerBoundaryBlockRegion(), WalkerBoundaryUnblockModel(), and WalkerBoundaryUnblockRegion().

2/5/99
Released build 013 –
Scott Bilas

Added CallSceneFunction(), ClearModelShadowTexture(), ClearPropGAS(), CloseConsole(), DumpLayerStack(), DumpLockedObjects(), FollowOnDrivingMap(), ForceCutToCameraAngle(), GetCameraAngleCount(), GetIndexedCameraAngle(), HideModelGroup(), HideReportGraph(), OpenConsole(), PlaySoundTrack(), SetGameTimer(), SetModelShadowTexture(), SetPamphletPage(), SetPropGAS(), SetWalkAnim(), ShowModelGroup(), ShowReportGraph(), StartPropFidget(), StopAllSoundTracks(), StopPropFidget(), StopSoundTrack(), ToggleConsole(), and WalkToSeeMode().

Added new grammar for literal strings (|<string>|).

2/18/99
Released build 014 –
Scott Bilas

Added ShowFingerprintInterface() and TriggerNounVerb().

2/25/99
Released builds 015 and 016 –
Scott Bilas

Modified ShowFingerprintInterface(). Added SetCameraGlide(), TextInspectCameraGizmoX(), and TextInspectPositionGizmoX().

Table of Contents

1The Sheep Language

1.0 Introduction
1
1.1 Preface
1
1.2 Introduction to Sheep
1
2.0 A Tutorial Introduction
2
2.1 Getting Started
2
2.2 Variables and Arithmetic
4
2.3 Synchronization
5
2.4 Summary
6
3.0 Types, Operators, and Expressions
6
4.0 Control Flow
7
5.0 Functions and Program Structure
7
6.0 Execution
7
6.1 Synchronization
7
6.2 Multiple Threads
7
7.0 The Console
7
8.0 Sheep Language Reference
7
8.1 Grammar
7
8.2 Lexical conventions
8
8.3 Comments
8
8.4 Identifiers (names)
9
8.5 Keywords
9
8.6 Constants
9
8.6.1 Integer constants
9
8.6.2 Floating constants
9
8.6.3 Strings
9
8.6.4 Literal Strings
10
8.7 Syntax notation
10
Function Reference
11
1.0 Introduction
11
2.0 Function Specifications
11
2.1 General Specification Format
11
2.2 Specification Fields
11
2.2.1 FunctionName
12
2.2.2 Prototype
12
2.2.3 Behavior
12
2.2.4 Parameters
12
2.2.5 Return Value
13
2.2.6 Description
13
2.2.7 Example
13
2.2.8 History
13
2.3 General Function Notes
13
2.4 New Functions
13
2.4.1 Process for Everybody Else
14
2.4.2 Process for Core Engineers
14
3.0 Function List
1

The Sheep Language

1.0 Introduction

[This section of the Sheep reference (“The Sheep Language”) is shamelessly plagiarized from the classic “K&R” book on programming in C (1978). Original credits for about 80% of this text go to Brian W. Kernighan and Dennis M. Ritchie.]

1.1 Preface

This manual is meant to help the reader learn how to program in Sheep. It contains a tutorial introduction to get new users started as soon as possible, separate chapters on each major feature, and finally a reference section on the system library that Sheep scripts can use. This manual is not an introductory programming manual; it assumes some familiarity with basic programming concepts like variables, assignment statements, and functions. Nonetheless, a novice programmer should be able to read along and pick up the language.

1.2 Introduction to Sheep

Sheep is a general-purpose programming language based on ‘C’ with some design concepts taken from JavaScript, Perl, and COG (Jedi Knight’s scripting language). Sheep is not a “very high level” language, nor a “big” one, and though it is meant for scripting the choreography of Gabriel Knight III, it is not specialized to any particular area of application.

Sheep provides no operations to deal directly with composite objects such as character strings, containers, scenes, or actors. The language does not define any storage allocation facility other than global definition – there is no heap or other dynamic memory support. Finally, Sheep itself provides no input-output facilities: there are no READ or WRITE statements, and no wired-in file access methods. All of these higher-level mechanisms must be provided by explicitly called functions.

Though Sheep doesn’t directly support multithreading within the language itself, the virtual machine that executes Sheep code can execute many functions at once. Additionally, within the Sheep language there is support for synchronization of function calls. Say you want to start two actors walking towards each other and then play a handshake animation once they arrive at the correct position. Sheep supports this by asynchronously telling each actor to begin walking, then waiting for both to finish, and then playing the handshake animation.

Although the absence of some of these features may seem like a grave deficiency (“You mean I have to call a function to compare two character strings?), keeping the language down to modest dimensions has brought real benefits. Since Sheep is relatively small, it can be described in a small space, and learned quickly. A compiler and interpreter for Sheep can be simple and compact (though GK3’s is not).

Sheep can be easily compared to C, JavaScript, Perl, and COG. It contains a similar language structure to C and its compiler is similar in interface to current C compilers. It borrows the bytestream interpretation (p-code) via virtual machine concept from JavaScript. The ‘$’ tag on all user identifiers comes from Perl (to allow the language to mutate without breaking existing Sheep code). Some general design concepts came from COG (generally referring to the purpose and usage of the language).

In Sheep, the fundamental data objects are constant character strings, integers, and floating point numbers. It provides a subset of the common fundamental flow-control constructions required for well-structured programs: mainly statement grouping (via ‘{‘ and ‘}’) and decision making (if). Note that Sheep purposely leaves out looping constructs such as for, do, and while because these aren’t necessary in the making of Gabriel Knight III. Sheep was designed to be a choreography tool, which requires only basic logic control. Primarily we’re after issuing sequences of requests and waiting for one or several to complete before issuing the next sequences.

Disclaimer: because Sheep is an evolving language that is likely to change (mainly through additions) rapidly as Gabriel Knight III progresses, some of the material in this manual may not correspond to the current state of development for a particular system. Updates will be made to this document as time permits.

2.0 A Tutorial Introduction

Let us begin with a quick introduction to Sheep. Our aim is to show the essential elements of the language in real programs, but without getting bogged down in details, formal rules, and exceptions. At this point, we are not trying to be complete or even precise (save that the examples are meant to be correct). We want to get you as quickly as possible to the point where you can write useful programs, and to do that we have to concentrate on the basics: variables and constants, arithmetic, control flow, functions, and the rudiments of output.

2.1 Getting Started

The only way to learn a new programming language is by writing programs in it. The first program to write is the same for all languages:

Print the words

hello,
world

This is the basic hurdle; to leap over it you have to be able to create the program text somewhere, compile it successfully, load it, run it, and find out where your output went. With these mechanical details mastered, everything else is comparatively easy.

In Sheep, the program to print “hello, world” is

code
{
 func$()
 {
 PrintString(“hello,\nworld”);
 }
}

To run this program, you must first save it with an extension of “.shp” somewhere in your resource search path (check your GK3.INI file for what those are). Then, from within GK3, open up the console via the tilde (~) key. The console is the interface to the GK3 Sheep engine and is where you will execute most of your commands from. To run this Sheep file (say it’s named “hello.shp”), type this in on the console’s command line:

CallSheep(“hello”, “func$”);

If you haven’t botched anything, such as omitting a character or misspelling something, the compilation will proceed silently, and the Sheep will immediately run, printing “hello, world” to the console’s scrollback buffer.

Exercise 1. Run this script on your system. Experiment with leaving out parts of the script, to see what error messages you get. (
Now for some explanations about the program itself. A Sheep script, whatever its size, consists of one or more “functions” which specify the actual computing operations that are to be done. In our example, func$ is such a function. You are at liberty to give functions whatever names you like, provided that they always end in the dollar sign (‘$’) character. More generally, in a Sheep script, any time you “make up” a new name to call something, it should always end in ‘$’. If you are familiar with C programming, you might be looking for a “main” function. In the Sheep language, there is no such thing. When you want to run a Sheep script, you choose a file and function to run, and tell the system to execute it. The loading and unloading of a Sheep file is handled automatically by the engine.

Sheep scripts typically use a variety of functions to get their work done. There are two basic types of functions in the Sheep language: user-defined and system.

A user-defined function is a chunk of functionality that will be executed by the Sheep engine as requested. It usually consists of a series of “statements” that perform a variety of tasks, such as running animations or querying game flags. Sheep functions must appear within a code “block” (within the braces of the code { } section), and they always follow the form given in the previous example. That is, the name of the function followed by a pair of matching parentheses and the statements enclosed in braces. You make up the function name, trailing it with a ‘$’ character. It must be unique within the file. Sheep files are collections of user-defined functions. Functions having a similar purpose or context can be grouped within the same file, but this isn’t necessary, it’s purely for convenience (though it is much more efficient internally). A Sheep script can consist of any number of functions, and the system can use any number of Sheep files.

A system function is a piece of the game engine that has been exposed to the Sheep engine for use by Sheep scripts. For example, CutToCameraAngle() is a system function. Probably 95% of what Sheep scripts will do is call system functions. The way that you communicate data to system functions is through arguments. The parentheses following the function name surround the argument list. A function is invoked by naming it, followed by a parenthesized list of arguments. The line that says

PrintString(“hello,\nworld”);
is a function call, which calls a function named PrintString, with the argument “hello,\nworld”. PrintString is a system function which prints output to the console (actually it’s the “SheepScript stream”, but by default this is just the console). In this case, it prints the string of characters that make up its argument.

A sequence of any number of characters enclosed in the double quotes “…” is called a character string or string constant. Our only use of character strings will be as arguments for PrintString and other system functions.

The sequence \n in the string is Sheep notation for the newline character, which is the same thing as hitting the “enter” key in a word processor. If you leave out the \n (a worthwhile experiment), you will find that the two words “hello” and “world” don’t appear on separate lines. The only way to get a newline character into the PrintString argument is with \n; if you try something like

PrintString(“hello,
world”);

the Sheep compiler will print unfriendly diagnostics about missing quotes.

Notice that \n represents only a single character. An escape sequence like \n provides a general and extensible mechanism for representing hard-to-get or invisible characters. Among the others that Sheep provides are \" for the double quote, \' for the single quote, and \\ for the backslash itself.

Exercise 2. Experiment to find out what happens when PrintString’s argument string contains \x, where x is some character not listed above. (
2.2 Variables and Arithmetic

The next program converts the Fahrenheit temperature 280(to its Celsius equivalent (137.8(), using the formula C = (5/9)(F-32). Execute it by typing CallSheep(“<filename>”, “Convert$”); on the command line, where <filename> is the name of the file this Sheep is contained in. Here is the program itself.

/* print Fahrenheit 280
 converted to Celsius */

symbols
{
 float fahr$ = 280.0, celsius$;
}

code
{
 Convert$()
 {
 celsius$ = (5.0/9.0) * (fahr$ - 32.0); // do the conversion
 PrintFloat(celsius$);
 }
}

The first two lines

/* print Fahrenheit 280
 converted to Celsius */

are a comment, which in this case explains briefly what the program does. Any characters between /* and */ are ignored by the compiler; they may be used freely to make a program easier to understand. Comments may appear anywhere a blank or newline can. Sheep also supports an additional type of comment

celsius$ = (5.0/9.0) * (fahr$ - 32.0); // do the conversion

This type of comment begins with a double forward-slash and ends at the end of the line. Anything after the // up until the end of the line is ignored by the compiler. The two types of comments can be used interchangeably. The second is more convenient to use (it doesn’t require the extra typing) while the first is useful for “commenting out” portions of code. That is, to temporarily make code so it’s not seen by the compiler (perhaps when debugging a certain portion of Sheep script) surround it with the /* and */ marks.

In Sheep, all variables must be declared before use within the symbols section. If you forget a declaration, you will get a diagnostic from the compiler. A declaration consists of a type and a list of variables which have that type, as in

float fahr$ = 280.0, celsius$;

Note that variable names, as with all user-defined Sheep names, must end in a ‘$’. The type float implies that the variables listed are floating point numbers, i.e. numbers which have a fractional part. Other available Sheep variable types are int and string. An int is an integer type that can only be used to represent whole numbers (e.g. -30, 2, 1015). A string holds a character string, but is not likely to be used often because strings cannot currently be modified in Sheep v1.

As in the example, when declaring variables in the symbols section, each variable may have an initial value. If a variable does not have an initial value, it is set to zero. So in the previous example, when the function starts running, fahr$ is set to 280 and celsius$ is set to 0.

Statements in Sheep code end with a semicolon ‘;’. Leaving the semicolon off will generate some interesting errors from the compiler and is a common mistake to watch out for when writing code. The compiler does not care about the spacing of statements, but it is important to pick an easily readable style and stick with it. The body of a function that contains statements is usually indented as shown in the example (with either a tab or several spaces). Indentation implies ownership, and makes it easier to see the program flow. In the example, the function “owns” its statements, so those statements are indented to show it. The code section “owns” its functions, and therefore they are indented as well.

Most of the work in this example is done in this statement

celsius$ = (5.0/9.0) * (fahr$ - 32.0); // do the conversion

The Celsius temperature is computed and assigned to celsius$. The reason for using 5.0/9.0 instead of the simpler looking 5/9 is that in Sheep, as in many other languages, integer division truncates, so any fractional part is discarded. Thus 5/9 is zero and of course so would be the Celsius temperature. A decimal point in a constant indicates that it is floating point, so 5.0/9.0 is 0.555…, which is what we want.

We also wrote 32.0 instead of 32, even though since fahr$ is a float, 32 would be automatically converted to float (to 32.0) before the subtraction. As a matter of style, it’s wise to write floating point constants with explicit decimal points even when they have integral values; it emphasizes their floating point nature for human readers, and ensures that the compiler will see things your way too.

After the Celsius conversion happens the new value is assigned to the celsius$ variable, we can print it out with the system function PrintFloat. This function “takes” a float and prints its value to the console. By the way, the system functions that we’ve used so far (PrintString and PrintFloat) are not part of the Sheep language; there is no input or output defined in Sheep itself. There is nothing magic about either of those functions either; they are just useful functions which are provided by the GK3 system and are available to all Sheep scripts. In order to concentrate on Sheep itself, we won’t talk much about these functions until the Function Reference later in this manual.

Exercise 3. Modify the temperature conversion script to print a heading above the temperature that it outputs to the console. (
Exercise 4. Write a program to print the corresponding Celsius to Fahrenheit conversion. (
2.3 Synchronization

Say we have a scene with two actors. The first actor (Gabriel) will walk over to the monkey stand and complain about how hot the temperature is. At the same time, the second actor (Mosely) will scratch his head, then when Gabriel is done complaining, he will give a monkey to Gabriel, who then walks off. This involves a walk, playing a line of dialogue, playing a couple animations, and then another walk. The trick is to synchronize Mosely and Gabriel – the animation of Mosely giving Gabe the monkey requires both actors to be free. So Mosely must be done scratching his head and Gabriel must be done complaining. This can be accomplished with a wait tag, as shown in this program.

/* the monkey scene */

code
{
 PlayMonkeyScene$()
 {
 wait WalkTo("Gabriel", "Stand");
 wait
 {
 StartDialogue("GabrielBitch");
 StartAnimation("MoselyScratch");
 }
 wait StartAnimation("GiveMonkey");
 wait WalkTo("Gabriel", "FarAway");
 }
}

“Waiting” on a function causes the Sheep to temporarily pause (taking no CPU time) while it waits for the function to complete. Most function calls are actually requests to the system to start a new action of some sort. For example, PlaySound() tells the game engine to start playing a sound. This happens independently and the Sheep is not required to wait for it to complete. In most cases, however, especially when choreographing complex scenes, the Sheep will want to make sure that things happen in sequence. So these two lines

wait StartAnimation("GiveMonkey");
wait WalkTo("Gabriel", "FarAway");

say to the game engine “start animation GiveMonkey, wait for it to finish, then walk Gabriel to position FarAway, and wait for that to finish too”. If the wait tags were to be left out, Gabriel would immediately start walking to position FarAway and ignore the animation. The WalkTo() would override the animation that was already “playing”, even though it never got anywhere.

However, in cases where multiple things must happen at once, and then something else must happen later, a “wait block” can be used

wait
{
 StartDialogue("GabrielBitch");
 StartAnimation("MoselyScratch");
}

All statements inside of a wait block are executed immediately. The Sheep engine will keep track of anything that will take time to complete, and then waits for all of them to finish at the end of the block (the closing brace {). So in the program, both the dialogue GabrielBitch and the animation MoselyScratch must both complete before the Sheep engine will start animation GiveMonkey. Note that wait tags inside of a wait block are ignored. The entire block will be waited upon no matter what.

2.4 Summary

At this point we have covered what might be called the conventional core of Sheep. With this handful of building blocks, it’s possible to write useful programs of considerable size, and it would probably be a good idea if you paused long enough to do so. After you have this much of Sheep under control, it will be well worth your effort to read on, for the features covered in the next few chapters are where the power and expressiveness of the language begin to become apparent.

3.0 Types, Operators, and Expressions

4.0 Control Flow

5.0 Functions and Program Structure

6.0 Execution

6.1 Synchronization

6.2 Multiple Threads

7.0 The Console

8.0 Sheep Language Reference

8.1 Grammar

This is a simplified BNF-style grammar for the Sheep language. For easier readability, there’s some regular expressions mixed in – ? means “zero or one of the previous expression”, + means “one or more of the previous expression”, * means “zero or more of the previous expression”, and | means “or”. Subexpressions on the same line are typically grouped with parentheses for more obvious precedence.

script := symbols? code?

symbols := 'symbols' '{' variable_decl* '}'

variable_decl := ('int'|'float'|'string') variable_list+ ';'

sysid := ([a-z_A-Z][a-z_A-Z0-9]*)

userid := sysid\$

variable_list := userid ('=' constant)?

code := 'code' '{' function* '}'

function := userid '(' ')' '{' statement* '}'

statement := if_statement
 | userid '=' expr ';'
 | expr ';'
 | 'return' ';'
 | 'breakpoint' ';'
 | 'sitnspin' ';'
 | 'goto' userid ';'
 | userid ':'
 | 'wait' ';'
 | 'wait' function_call ';'
 | 'wait' '{' (function_call ';') * '}'
 | block_statement

if_statement := 'if' '(' expr ')' block_statement
 ('else' (block_statement | if_statement))?

block_statement := '{' statement* '}'
 | '{' '}'
 | ';'

function_call := sysid '(' expr (',' expr)* ')'

expr := function_call
 | userid
 | constant
 | '(' expr ')'
 | '-' expr
 | '!' expr
 | expr '+' expr
 | expr '-' expr
 | expr '/' expr
 | expr '*' expr
 | expr '%' expr
 | expr '<' expr
 | expr '>' expr
 | expr '<=' expr
 | expr '>=' expr
 | expr '!=' expr
 | expr '<>' expr
 | expr '||' expr
 | expr '&&' expr

8.2 Lexical conventions

There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separators. Blanks, tabs, newlines, and comments (collectively, “white space”) as described below are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the longest string of characters that could possibly constitute a token.

8.3 Comments

The characters /* introduce a comment, which terminates with the characters */. The characters // also introduce a comment, which terminates with a newline. Comments do not currently nest in Sheep v1 (though this feature is planned for the next version).

8.4 Identifiers (names)

An identifier is a sequence of letters and digits; the first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are the same. Any number of characters are significant. “User” identifiers (used for custom function names, labels, etc.) must end in $ with no white space in between.

8.5 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

int
if
yield
float
else
export
string
goto
breakpoint
code
return
sitnspin
symbols
wait

The export keyword is currently processed, but not used by the Sheep engine. It will likely be removed in a future version.

8.6 Constants

There are several kinds of constants, listed below.

8.6.1 Integer constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of digits preceded by 0x or 0X (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A through f or F with values 10 through 15. Integer constants are always represented internally as “C ints” (32-bit integer numbers).

8.6.2 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e and the exponent (not both) may be missing. Floating point constants are always represented internally as “C floats” (32-bit floating point numbers).

8.6.3 Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type “array of characters” and is stored statically within the Sheep object file – all references to them are indirect. Duplicate strings are merged to reduce memory usage. Within a string, certain non-graphic characters, the single quote ', double quote ", and the backslash \, may be represented according to the following table of escape sequences:

newline/linefeed
LF
\n
double quote
"
\"
carriage return
CR
\r
single quote
'
\'
horizontal tab
HT
\t
backslash
\
\\
vertical tab
VT
\v
backspace
BS
\b
form feed
FF
\f
octal bit pattern
ddd
\ddd
alert/bell
BEL
\a
hex bit pattern
ddd
\xddd

The escape \xddd consists of the backslash followed by 1, 2, or 3 hex digits which are taken to specify the value of the desired character. The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the value of the desired character. A special case of this construction is \0 (not followed by a digit), which indicates the character NUL. If the character following a backslash is not one of those specified, the backslash is ignored.

Finally, within a string, a \ and an immediately following newline are ignored. Strings are represented internally as “C const char *’s” (32-bit pointer-to-constant-char-array).

8.6.4 Literal Strings

A literal string is a sequence of characters surrounded by |< and >|, as in |<this is a string>|. It is a string that does not allow escaped characters within it. In other words, everything in the string is taken exactly as-is. This is useful when you are typing in paths, which have a lot of backslashes in them. Another feature of literal strings is that they are nestable. This combined with no escape characters means that it’s a lot easier to construct “strings of strings” – many Sheep functions take strings which contain commands. Normally any nested strings would need to be escaped, and the escapes would themselves need to be escaped. Literal strings avoid that problem. Note that normal strings and literal strings can be used interchangeably.

8.7 Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and literal words and characters in monospace type. Alternative categories are listed on separate lines. An optional terminal or non-terminal symbol is indicated by the subscript “opt,” so that

{ expressionopt }

indicates an optional expression enclosed in braces.

Function Reference

9.0 Introduction

This section specifies the available functions in the Sheep language. The language itself is not likely to change much – the keywords and syntax are a pain to mess with so we’ll probably be leaving all that alone. However, the system functions are very easy to add and modify, and we’ll likely have several hundred of them by the time the game ships. This separate section has a slightly different format (for flexibility and easy per-release updates) and is entirely devoted to the specifications for these functions.

10.0 Function Specifications

10.1 General Specification Format

The rest of this section is divided into categories such as “Actors”, “Debugging”, and “Scene”. This grouping is to make it more convenient to find functions rather than having to flip through a random cloud. New categories will always start a new page, and functions specified within a category will never span more than one page (there’s a reason for this, just hang on). Function specifications will always take the exact same form, which looks like this:

FunctionName [*]

Prototype
<optional return type> FunctionName(<parameter list>);

Behavior
optional “DEVELOPMENT ONLY” and then either “IMMEDIATE” or “WAIT”

Parameters
<parameter 1> is the name of the monkey.

<parameter 2> is the amount of gasoline left in the hypodermic.

Return Value
Returns a <return type> that will smoke a monkey.

Description
<Description of the function>

Example
value$ = FunctionName(“abc”, 3, 5.3);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:20:34 PM
Fixed description to be more accurate
1.1.035
7/2/98 8:30:24 AM
Added error checking on parameters
1.2.120
9/20/98 10:08:01 PM

10.2 Specification Fields

Here is a better explanation of the fields of a function specification:

10.2.1 FunctionName

This is the name of the function. It always starts the specification block. Function specifications are in alphabetical order within a category. The FunctionName field may have one of two tags attached to it:

[*] – this designation is used to tell whether or not the function is a “core function”, meaning that it is will be used often during coding of game content. Scripters should look for these and can pretty much ignore the rest.

[FunctionName] – if the function name is wrapped in brackets, then that means it’s development mode only, and will not work in the shipping product. Functions of this type that are called will be flagged as errors during QA. Same thing as the Behavior field being marked as development only.

10.2.2 Prototype

The “prototype” is a nerdy way of saying “how to call the function”. A function prototype has a return type, the function name, and the list of parameters that are required in order to call the function. Example:

int GetStringLength(string text);

This function prototype describes a function that takes a string and returns an integer that says how long the string is. So calling it via GetStringLength(“abc”) would return the value 3. If there is no return value, then nothing will precede the function name and the “Return Value” field (2.2.5 below) will be left out. If no parameters are required for the function, then there will be an empty parentheses () following the function name and the “Parameters” field (2.2.4 below) will be left out.

10.2.3 Behavior

This entry talks about two different things – development mode and the call method.

If the text development only appears, then this function is only available in non-production builds of the game executable. Any development only functions that get called during QA testing will be flagged as errors so they can be removed. In production modes, calling development-only functions will simply do nothing (but it will not cause an error).

The call method is a required entry in every function specification, and it can be either immediate or wait.

immediate: The immediate call method is used to signify that a function will always execute and return immediately. That is, it takes zero time to execute. Functions like these are typically not tied to a series of frames. They may be used with the optional wait tag when being called from Sheep code, but it won’t make any difference – the function will always execute immediately.

wait: The wait call method is used to signify that a function will take some time to execute (usually because it is time- or frame-dependent) and it’s possible to wait on the result. For example, the function StartAnimation() will start a G-Engine animation that may take several seconds to execute. Because the specification for this function has been tagged with wait, the calling Sheep code may wait for the animation to finish (though it doesn’t have to). See the language reference for more information on waiting on the results of Sheep function calls.

10.2.4 Parameters

This field lists all parameters that the function takes and describes how to use those parameters. If the function takes no parameters, then this field will be left out of the function specification.

10.2.5 Return Value

This field describes the return value of a function and how to use it. If the function does not return a value, then this field will be left out of the function specification.

10.2.6 Description

This is a text description similar to what you would get if you called HelpCommand() on the function. Be sure to read it, especially if it has any “important notes” in it (otherwise the game may do some unexpected things and besides it voids the warranty).

10.2.7 Example

This is an example of how to call the function. Never very exciting, but it does show the proper format.

10.2.8 History

Any time a change is made to the function or the specification, an entry goes in this history. At a minimum you’ll see a “Created” entry saying when the function was added. Note the release number: it has a standard major/minor version number (like “1.0”) with the build number attached. This can be used to correlate changes with labels in SourceSafe. The format is X.Y.ZZZ, where X is the major version number, Y is the minor version number, and Z is a three-digit build number.

10.3 General Function Notes

These are some general notes on the functions themselves:

· Even though GK3 tracks angles internally as radians, when using Sheep functions, all angles are always in degrees. Usually there will be either a heading or horizontal angle and a vertical angle.

· Note that our coordinate system is “left-handed”. This means that the floor plane is the X-Z plane. Y is used for up/down.

· Nothing is case-sensitive. This was mentioned in the language documentation for the language elements themselves (like function names, variable names, etc.) but this also applies to all game objects. When referencing game objects (like positions, actors, or filenames) we pass in strings. These strings to not need to worry about case. So GK3 sees WalkTo(“gabriel”,“thedoor”) exactly the same as it sees walkTO(“gAbRiEl”,“THEdooR”).

10.4 New Functions

As the project progresses we’ll likely be adding entire groups of functions to support needs that we can’t possibly predict right now (especially for Easter eggs). New groups are simple to add – they can simply be printed out in sections and inserted into current documentation. New functions within an individual group or changes to an existing function are more difficult to coordinate. This will be handled by issuing an addendum email for each new release of the game engine. The addendum will have function changes grouped by category, so that the printed pages can be shoved at the back of the group in existing documentation (changed or removed functions can be crossed out). This should cut down on how often we have to waste paper and time printing out the entire Sheep engine document.

There are two separate processes for requesting new functions be added to the Sheep language. One for core engineers and another for everybody else.

10.4.1 Process for Everybody Else

Send an email to the engineering technical lead with an exact description of what the function needs to do and what it will be used for. The description is necessary so that we know exactly how to write the function. And the “what it will be used for” is necessary so that we can properly test the function before the next internal release.

10.4.2 Process for Core Engineers

Do the same as everybody else with the email as described in 2.4.2 above. If we decide to add the function to the Sheep language, then you will need to code the functionality yourself (or get with the project lead and figure out a way to have somebody else do it). Expose an interface from your subsystem that can be accessed globally, and email back some sample code of how to use the interface. Important: also include details about what the error conditions are and how they are handled by the interface.

11.0 Function List

This is a list of every available Sheep function in GK3. Development-only functions are surrounded by brackets and should not go into shipping code.

[AddCaptionDefault]

[AddCaptionEgo]

[AddCaptionVoiceOver]

[AddCaseLogic]

[AddPath]

[AddStreamContent]

[AddStreamOutput]

[AddTemplate]

[Alias]

[AnimEvent]

[BindDebugKey]

 Blink

 BlinkX

 Call

 CallDefaultSheep

 CallGlobal

 CallGlobalSheep

[CallIndexedSheep]

 CallSceneFunction

 CallSheep

 CameraBoundaryBlockModel

 CameraBoundaryUnblockModel

[CheckCase]

[ClearCaptionText]

[ClearConsole]

[ClearConsoleBuffer]

[ClearDebugFlag]

 ClearFlag

 ClearModelShadowTexture

 ClearMood

 ClearPropGAS

[ClearStreamContent]

[ClearStreamOutput]

[CloseConsole]

 CombineInvItems

[CommitCaseLogic]

 ContinueDialogue

 ContinueDialogueNoFidgets

[CreateCameraAngleGizmo]

[CreateCameraAngleGizmoX]

[CreatePositionGizmo]

[CreatePositionGizmoX]

 CutToCameraAngle

[CutToCameraAngleX]

 DefaultInspect

[DisableCameraBoundaries]

 DisableCinematics

[DisableCurrentSheepCaching]

 DisableEyeJitter

[DisableIncrementalRendering]

[DisableInterpolation]

[DisableSheepCaching]

[DisableSound]

[DisableStream]

 DoesEgoHaveInvItem

 DoesGabeHaveInvItem

 DoesGraceHaveInvItem

 DoesModelExist

 DoesSceneModelExist

[DrawFilledRect]

[DumpActiveSheepObjects]

[DumpActiveSheepThreads]

[DumpActorPosition]

[DumpAnimator]

[DumpBuildInfo]

[DumpCamera]

[DumpCameraAngles]

[DumpCaseCode]

[DumpCommands]

[DumpDebugFlags]

[DumpEgoActiveInvItem]

[DumpFile]

[DumpFlags]

[DumpInsetNames]

[DumpLayerStack]

[DumpLocations]

[DumpLockedObjects]

[DumpMemoryUsage]

[DumpModel]

[DumpModelNames]

[DumpNouns]

[DumpPathFileMap]

[DumpPosition]

[DumpPositions]

[DumpRawSheep]

[DumpSceneModelNames]

[DumpSheepEngine]

[DumpTimes]

[DumpUsedFiles]

[DumpUsedPaths]

[Edit]

 EgoTakeInvItem

[EnableCameraBoundaries]

 EnableCinematics

 EnableEyeJitter

[EnableIncrementalRendering]

[EnableInterpolation]

[EnableSheepCaching]

[EnableSound]

[EnableStream]

 EndConversation

[ExecCommand]

 Expression

 EyeJitter

[FindCommand]

 FollowOnDrivingMap

 ForceCutToCameraAngle

[ForceQuitGame]

[FullReset]

[FullScanPaths]

[GetCameraAngleCount]

 GetCameraFOV

 GetChatCount

 GetChatCountInt

 GetCurrentSheepFunction

 GetCurrentSheepName

[GetDebugFlag]

 GetEgoCurrentLocationCount

 GetEgoLocationCount

 GetEgoName

 GetFlag

 GetFlagInt

 GetGameVariableInt

[GetGamma]

[GetIndexedCameraAngle]

[GetIndexedPosition]

 GetNounVerbCount

 GetNounVerbCountInt

[GetPositionCount]

 GetRandomFloat

 GetRandomInt

 GetScore

[GetTimeMultiplier]

 GetTopicCount

 GetTopicCountInt

[GetVolume]

 Glance

 GlanceX

 GlideToCameraAngle

 HasTopicsLeft

[HelpCommand]

[HideAmbientMapGizmo]

[HideCameraAngleGizmo]

[HideConstruction]

 HideInset

 HideInventory

 HideModel

 HideModelGroup

 HidePlate

[HidePositionGizmo]

[HideReportGraph]

 HideSceneModel

[HideWalkerBoundaryGizmo]

 IncGameVariableInt

 IncNounVerbCount

 IncreaseScore

 InitEgoPosition

[InsertConsole]

 InspectObject

 InventoryInspect

 InventoryUnInspect

 IsActorAtLocation

 IsActorNear

 IsActorOffstage

 IsCurrentEgo

 IsCurrentLocation

 IsCurrentTime

 IsModelVisible

 IsSceneModelVisible

 IsWalkingActorNear

 LookitActor

 LookitActorQuick

[LookitCameraAngle]

 LookitCancel

 LookitLock

 LookitModel

 LookitModelQuick

 LookitModelQuickX

 LookitModelX

[LookitMouse]

 LookitNoun

 LookitNounQuick

[LookitPlayer]

 LookitPoint

 LookitSceneModel

 LookitSceneModelQuick

 LookitUnlock

 LoopAnimation

[NukeAllSheep]

[NukeSheep]

[Open]

[OpenConsole]

 PlayFullScreenMovie

 PlayMovie

 PlaySound

 PlaySoundTrack

[PrintFloat]

[PrintFloatX]

[PrintInt]

[PrintIntHex]

[PrintIntHexX]

[PrintIntX]

[PrintString]

[PrintStringX]

[QuitGame]

[ReEnter]

[RefreshScreen]

[RemoveStreamContent]

[RemoveStreamOutput]

[RemoveTemplate]

[ReportMemoryUsage]

[ReportSurfaceMemoryUsage]

[RescanPaths]

[ResetCaseLogic]

[ResetGameData]

[SaveSprite]

[SaveTexture]

[SaveTextureX]

 ScreenShot

[ScreenShotX]

 SetActorLocation

 SetActorOffstage

 SetActorPosition

 SetCameraFOV

 SetCameraGlide

[SetChatCount]

[SetConsole]

 SetConversation

[SetDebugFlag]

[SetEgo]

 SetEgoActiveInvItem

[SetEgoLocationCount]

[SetEyeOffsets]

 SetFlag

 SetGameTimer

 SetGameVariableInt

[SetGamma]

 SetGlobalSheep

 SetIdleGAS

 SetInvItemStatus

 SetListenGAS

 SetLocation

 SetLocationTime

 SetModelShadowTexture

 SetMood

[SetNextEgo]

 SetNounVerbCount

 SetPamphletPage

[SetPrevEgo]

 SetPropGAS

[SetRenderFlat]

[SetRenderFull]

[SetRenderShaded]

[SetRenderWireframe]

 SetScene

[SetSceneViewport]

[SetScore]

[SetShadowTypeBlobby]

[SetShadowTypeModel]

[SetShadowTypeNone]

[SetStreamAction]

[SetStreamFilename]

[SetStreamFileTruncate]

[SetSurfaceHigh]

[SetSurfaceLow]

[SetSurfaceNormal]

 SetTalkGAS

 SetTime

[SetTimeMultiplier]

 SetTimerMs

 SetTimerSeconds

[SetTopicCount]

 SetTopSheep

[SetVolume]

 SetWalkAnim

[ShowAmbientMapGizmo]

 ShowBinocs

[ShowCameraAngleGizmo]

[ShowConstruction]

 ShowFingerprintInterface

 ShowDrivingInterface

 ShowInset

 ShowInventory

 ShowModel

 ShowModelGroup

 ShowPlate

[ShowPositionGizmo]

[ShowReportGraph]

 ShowSceneModel

 ShowSidney

[ShowWalkerBoundaryGizmo]

 StartAnimation

 StartDialogue

 StartDialogueNoFidgets

[StartGame]

 StartIdleFidget

 StartListenFidget

 StartMom

 StartMorphAnimation

 StartMoveAnimation

 StartPropFidget

 StartTalkFidget

 StartVoiceOver

[StartYak]

[StopAllAnimations]

[StopAllMorphAnimations]

 StopAllSounds

 StopAllSoundTracks

 StopAnimation

 StopFidget

 StopMorphAnimation

 StopPropFidget

 StopSound

 StopSoundTrack

[TextInspectCameraGizmo]

[TextInspectCameraGizmoX]

[TextInspectPositionGizmo]

[TextInspectPositionGizmoX]

[ThrowException]

[ToggleConsole]

[ToggleDebugFlag]

[TriggerNounVerb]

 TurnHead

 TurnToModel

[Unalias]

[UnbindDebugKey]

 UnInspect

[UnloadAll]

[UnloadAllAnimations]

[UnloadAllModels]

[UnloadAllMovies]

[UnloadAllScenes]

[UnloadAllSounds]

[UnloadAllSprites]

[UnloadAllTextures]

[UnloadAnimation]

[UnloadModel]

[UnloadMovie]

[UnloadScene]

[UnloadSound]

[UnloadSprite]

[UnloadTexture]

[ViewportInspectCameraGizmo]

[ViewportInspectCameraGizmoX]

 WalkerBoundaryBlockModel

 WalkerBoundaryBlockRegion

 WalkerBoundaryUnblockModel

 WalkerBoundaryUnblockRegion

 WalkNear

 WalkNearModel

 WalkTo

 WalkToAnimation

 WalkToSeeModel

[WalkToXZ]

 Warp

 WasEgoEverInLocation

 WasLastLocation

 WasLastTime

Actors

This category contains Sheep functions that mess with GK3 actors. All of these functions take as their first parameter a string actorName. This name must correspond to an actor in the current scene. An actor will have the same name as their noun. Example actors are: “gabriel”, “grace”, or “simone”.

Documentation for “Lookits”

There is a set of Actor functions called “Lookits” which control an actor’s ability to track objects in 3D space. Generally the format is to call a Lookit???() function, passing in an actor, a target, a specification for which components to use, and a duration.

Target
This is generally determined by the function – for instance, LookitPoint() looks at a static point in 3D space, whereas LookitActor() looks at another actor’s face.

Components Specification
This is a simple string that says which parts of the actor to involve in the lookit command. Use the following key to the components:

‘A’ – all components

‘B’ – body (rotation only)

‘E’ – eyes

‘H’ – head

Example: "BE" will use just the body and eyes, "HB" will use the head and body only, and "A" will use everything. Order and case are not important.

Duration
This is the amount of time to spend in the lookit. It’s important to keep these numbers realistic – for example, how long would it take for Gabe to get bored looking at a painting? Perhaps 30 seconds. On the other hand, if he’s involved in a conversation, he’ll likely be interested in it for quite a while, so set the number a little higher. Also reset the lookit at the beginning of each line of dialogue to keep him interested.

Lookits are generally intelligent about transitioning from one to another. Don’t worry about resetting one before initiating another. Also note that lookits can be used in conjunction with other (temporary) higher priority commands such as glances and head turns. So if an actor is involved in something and then something else more “interesting” passes by, the actor can temporarily look at it and then return to their original state.

Blink [*]

Prototype
Blink(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Actor will blink if not doing anything higher priority (i.e. the eyelids are locked out for an expression or something. Chooses a random blink to use (same as actor would when eyelids are idle). Note that as with nearly all actor facial commands, this function is only a request and may be ignored if a higher priority command is currently being executed.

This function is a low-priority facial command request.
Example
Blink("Gabriel");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:35:57 AM

BlinkX

Prototype
BlinkX(string actorName, string blinkAnim);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

blinkAnim is the name of a blink animation to use for the actor (without the ‘.anm’ extension).

Description
Actor will blink if not doing anything higher priority (i.e. the eyelids are locked out for an expression or something. This function is identical to Blink() except you get to choose which blink to use. Note that as with nearly all actor facial commands, this function is only a request and may be ignored if a higher priority command is currently being executed.

This function is a low-priority facial command request.
Example
BlinkX("Gabriel", "gabblink2");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:37:15 AM

ClearMood

Prototype
ClearMood(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Clears any mood that the actor may be involved in. Goes to the 'normal' state, which does not require an .anm file, by the way. Note that as with nearly all actor facial commands, this function is only a request and may be ignored if a higher priority command is currently being executed.

This function is a medium-priority facial command request.
Example
ClearMood("Grace");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:35:57 AM

DisableEyeJitter

Prototype
DisableEyeJitter(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Disables background eye jittering for an actor. ‘Eye jitter’ is a small random eye motion that occurs every few seconds or so and attempts to approximate the human eye’s inability to focus exactly on a point for long periods of time.
Example
DisableEyeJitter("Emilio");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:39:16 AM

[DumpActorPosition]

Prototype
DumpActorPosition(string actorName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Dumps the position and heading info for an actor.

Example
DumpActorPosition(“gabriel”);
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 2:33:32 PM

EnableEyeJitter

Prototype
EnableEyeJitter(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Enables background eye jittering for an actor. ‘Eye jitter’ is a small random eye motion that occurs every few seconds or so and attempts to approximate the human eye’s inability to focus exactly on a point for long periods of time.
Example
EnableEyeJitter("Emilio");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:40:48 AM

Expression [*]

Prototype
Expression(string actorName, string expression);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

expression is the name of the expression to execute.

Description
The actor will show the given expression. Expressions must be 'one-shot' animations that end in the same state they start in. Depending on the scripting, this may or may not be the actor’s default face. Note that as with nearly all actor facial commands, this function is only a request and may be ignored if a higher priority command is currently being executed.

This function is a medium-priority facial command request.
Example
Expression("Emilio", "wink");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:40:48 AM

EyeJitter

Prototype
EyeJitter(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

Description
Tell the actor's eyes to jitter a little. This happens regardless of whether or not jittering is disabled.
Example
EyeJitter("Emilio");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:46:25 AM

GetEgoCurrentLocationCount [*]

Prototype
int GetEgoCurrentLocationCount();
Behavior
IMMEDIATE

Return Value
Returns the ego’s location count for the current timeblock and location.

Description
This just calls GetEgoLocationCount() using the current location. See GetEgoLocationCount() for more information.
Example
count$ = GetEgoCurrentLocationCount();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:26:45 PM

GetEgoLocationCount [*]

Prototype
int GetEgoLocationCount(string locationName);
Behavior
IMMEDIATE

Parameters
locationName is the three-character location code.

Return Value
Returns the ego’s location count for the current timeblock and the given location.

Description
The “ego location count” is a set of internal game variables that track the number of times the ego has been in a given room. Note that there is a set of location counts for both Gabe and Grace. Every time ego walks into a room, the game automatically increments the count for the current location and timeblock. This function is useful for running SCENE:ENTER scripts that change every time ego enters a room.
Example
count$ = GetEgoLocationCount(“LBY”);
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:33:54 PM

GetEgoName [*]

Prototype
string GetEgoName();
Behavior
IMMEDIATE

Return Value
Returns the name (noun) of the current ego.

Description
This function is useful for using the current ego’s name when calling another function. It just returns the name of the current ego.
Example
wait WalkTo(GetEgoName(), "FRONT_DESK");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:37:40 PM

[GetIndexedPosition]

Prototype
string GetIndexedPosition(int index);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
index is a 0 to N number where N is the number of available positions - 1. Positions are alphabetically ordered.

Return Value
Returns a string that is the name of the position.

Description
This function allows iteration over the available positions. Useful for putting actors on patrol but little else.
Example
WalkTo("Gabriel", GetIndexedPosition(iter$)); // where iter$ is an 'int'
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:52:21 AM

[GetPositionCount]

Prototype
int GetPositionCount();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns an int that is the number of available positions.

Description
This function allows iteration over the available positions. Use in conjunction with GetIndexedPosition() (and possibly GetRandomInt()) for some fun.
Example
count$ = GetPositionCount();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:55:49 AM

Glance [*]

Prototype
Glance(string actorName, int percentX, int percentY, int durationMsec);
Behavior
WAIT

Parameters
actorName is the name of the actor.

percentX and percentY are percentages from -100% to +100%.

durationMsec specifies how long the glance should last in milliseconds.

Description
Causes an actor to temporarily glance for in the given direction. Direction is specified using percentages of the maximum angular distance the eye can travel, where higher numbers in the x direction are to the actor's right, and higher numbers in the y direction are towards the ceiling.
Example
Glance("Gabriel", 80, 25, 1000);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 10:59:14 AM

GlanceX

Prototype
GlanceX(string actorName, int leftPercentX, int leftPercentY,
 int rightPercentX, int rightPercentY, int durationMsec);
Behavior
WAIT

Parameters
actorName is the name of the actor.

leftPercentX and leftPercentY are percentages from -100% to +100% for the left eye.

rightPercentX and rightPercentY are percentages from -100% to +100% for the right eye.

durationMsec specifies how long the glance should last in milliseconds.

Description
Causes an actor to temporarily glance for in the given direction. Direction is specified using percentages of the maximum angular distance the eye can travel, where higher numbers in the x direction are to the actor's right, and higher numbers in the y direction are towards the ceiling. This function is identical to Glance() except that it lets you specify the eye coordinates separately (be careful it doesn’t look stupid).
Example
GlanceX("Gabriel", -65, 30, 65, -20, 1000);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 11:01:45 AM

InitEgoPosition [*]

Prototype
InitEgoPosition(string positionName);
Behavior
IMMEDIATE

Parameters
positionName is the name of the position from the SIF.

Description
This will simultaneously move the ego to the given position and choose the camera associated with it. There must be a camera associated with this position (defined in the SIF) otherwise the game will give a warning. This function is useful for SCENE:ENTER actions (placing ego upon entering the scene).
Example
InitEgoPosition("FR_RC1");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 9:50:38 AM

IsActorAtLocation [*]

Prototype
int IsActorAtLocation(string actorName, string locationName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

locationName is the name of the location (three-character designation).

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the actor is at that location.

Description
This returns whether or not the actor is at the given location. This refers to an internal game variable that has nothing to do with what’s in the SIF – the actor’s “location” can only be set using SetActorLocation(). All actors are located “offstage” (location is "") when the game begins.
Example
if (IsActorAtLocation("Emilio", "RC1"))
{
 PlaySound("EmilioBad");
}

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:08:21 PM

IsActorNear

Prototype
int IsActorNear(string actorName, string positionName, float distance);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

positionName is the name of the position (from the SIF).

distance is the distance from the position to call “near”.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the actor is near the position.

Description
This function does a simple check to see how far the actor is from the given position. If their position is less than distance then it returns 1, otherwise 0.
Example
near$ = IsActorNear("Gabriel", "FR_HALR");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:10:52 PM

IsWalkingActorNear

Prototype
int IsWalkingActorNear(string actorName, string positionName, float distance);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

positionName is the name of the position (from the SIF).

distance is the distance from the position to call “near”.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the actor is walking to a point near the position.

Description
This function does a simple check to see how far the actor will be from the given position when the actor reaches the destination point. If their position will be closer than distance then it returns 1, otherwise 0.
Example
near$ = IsWalkingActorNear("Gabriel", "FR_HALR");
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 2:45:03 PM

IsActorOffstage [*]

Prototype
int IsActorOffstage(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the actor is offstage.

Description
This returns whether or not the actor is “offstage”. See IsActorAtLocation() for more info. Game content often does not care specifically where an actor is, only that he/she is offstage, and that’s what this function is for.
Example
isOffstage$ = IsActorOffstage("Grace");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:13:08 PM

IsCurrentEgo [*]

Prototype
int IsCurrentEgo(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the current ego is this actor.

Description
Call this to determine whether or not the current ego is this actor. This is useful for NVC logic on ALL type cases.
Example
if (IsCurrentEgo("Gabriel"))
{
 StartAnimation("GabPickNose");
}
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:18:10 PM

LookitActor [*]

Prototype
LookitActor(string actorName, string otherActorName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

otherActorName is the name of the actor to look at (it will look at their face).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at another’s face (about where their eyes are).
Example
LookitActor("Gabriel", "Emilio", "EH", 60);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:23:03 PM

LookitActorQuick [*]

Prototype
LookitActorQuick(string actorName, string otherActorName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

otherActorName is the name of the actor to look at (it will look at their face).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at another’s face (about where their eyes are). This function is identical to LookitActor() except that it executes at a higher priority and is meant for shorter duration lookits. Generally use this to have, say, Gabe check out a passing Buthane while talking to Emilio. This function will also allow the actor to use a wider (less “comfortable”) angle when doing the lookit, which will allow more head movement. This makes it more important to keep the duration short. People generally don’t like to look over their shoulder for a long time. Note that this function (like all Quick functions) will coexist with an existing lookit, and when it is done, the actor will return to their previous lookit.
Example
LookitActor("Gabriel", "Buthane", "E", 5);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:24:12 PM

[LookitCameraAngle]

Prototype
LookitCameraAngle(string actorName, string cameraAngle, string componentsSpec,
 float durationSec);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

cameraAngle is the name of the camera angle to look at (it will look at the “eye”).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at a particular camera angle. This function is generally only useful for development when testing out the lookits to see how they work. Create a camera angle in construction mode and have an actor Lookit it, then drag the camera angle around to see what they do.
Example
LookitCameraAngle("Gabriel", "Camera Angle:0", "A", 100000);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:29:54 PM

LookitCancel [*]

Prototype
LookitCancel(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

Description
Tells an actor to cancel their current Lookit, if they are currently involved in one. They will return to “staring into space mode” in a bit.
Example
LookitCancel("Emilio");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:31:29 PM

LookitLock

Prototype
LookitLock(string actorName, string componentsSpec, float durationSec)
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

componentsSpec is a string specifying what components are involved in the lookit lock. See docs at top of Actors section for more info.

durationSec is the duration of the lookit lock in seconds.

Description
This function will lock an actor’s components for lookits until either the lock times out or a call to LookitUnlock() is made. Use this to prevent other lookits, glances, etc. from overlapping the current activity. Future requests to modify any of the locked components will be ignored (but it won’t be an error). Note that WalkTo() and friends don’t pay attention to this lock and will do as they please, as will any hard coded animations.
Example
LookitLock("Gabriel", "E", 60); // lock eyes for a minute
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:33:45 PM

LookitModel [*]

Prototype
LookitModel(string actorName, string modelName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

modelName is the name of the model (type .MOD) to look at (it will look at the center of the model).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the center of a model.
Example
LookitModel("Gabriel", "r25table", "EHB", 205);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:52:29 PM

LookitModelQuick [*]

Prototype
LookitModelQuick(string actorName, string modelName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

modelName is the name of the model (type .MOD) to look at (it will look at the center of the model).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the center of a model. This function is identical to LookitModel() except that it executes at a higher priority and is meant for shorter duration lookits. See LookitActorQuick() for more info on what this means.
Example
LookitModelQuick("Gabriel", "r25painting1", "EH", 10);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:54:04 PM

LookitModelX

Prototype
LookitModelX(string actorName, string modelName, int mesh, string boxModifier,
 float offsetX, float offsetY, float offsetZ,
 string componentsSpec, float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

modelName is the name of the model (type .MOD) to look at.

mesh is the mesh index to look at on the model. Leave at ‘-1' to use the entire model.

boxModifier is one of the following: ‘top’, ‘bottom’, or ‘’ (blank). This will determine which part of the boundary box of the model (or mesh) to use – the y-max top, the y-min bottom, or the (default) center of the box.

offsetX, offsetY, and offsetZ are used as an additional offset from the boxModifier-modified coordinate. Use this to fine-tune exactly what an actor is looking at.

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at a very specific part of a model. Note that all parameters refer to the untransformed bounding box of the mesh/model under the knife. For advanced use only.
Example
LookitModelX("Gabriel", "r25table", 2, "BOTTOM", 1.5, 2.5, -10, "EHB", 10);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 1:58:38 PM

LookitModelQuickX

Prototype
LookitModelQuickX(string actorName, string modelName, int mesh,
 string boxModifier, float offsetX, float offsetY,
 float offsetZ, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

modelName is the name of the model (type .MOD) to look at.

mesh is the mesh index to look at on the model. Leave at ‘-1' to use the entire model.

boxModifier is one of the following: ‘top’, ‘bottom’, or ‘’ (blank). This will determine which part of the boundary box of the model (or mesh) to use – the y-max top, the y-min bottom, or the (default) center of the box.

offsetX, offsetY, and offsetZ are used as an additional offset from the boxModifier-modified coordinate. Use this to fine-tune exactly what an actor is looking at.

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at a very specific part of a model. Note that all parameters refer to the untransformed bounding box of the mesh/model under the knife. For advanced use only. This function is identical to LookitModelX() except that it executes at a higher priority and is meant for shorter duration lookits. See LookitActorQuick() for more info on what this means.
Example
LookitModelQuickX("Gabriel", "r25table", 2, "BOTTOM", 1.5, 2.5, -10, "EHB", 10);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:10:03 PM

[LookitMouse]

Prototype
LookitMouse(string actorName, string componentsSpec, float durationSec);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the mouse pointer. Development only.
Example
LookitMouse("Emilio", "A", 30);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:15:03 PM

LookitNoun [*]

Prototype
LookitNoun(string actorName, string nounName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

nounName is the name of the noun to look at (it will look at the center of the object).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the center of a noun. This may be a scene or model object.
Example
LookitNoun("Gabriel", "plant", "EHB", 30);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:11:55 PM

LookitNounQuick [*]

Prototype
LookitNounQuick(string actorName, string nounName, string componentsSpec,
 float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

nounName is the name of the noun to look at (it will look at the center of the object).

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the center of a noun. This function is identical to LookitNoun() except that it executes at a higher priority and is meant for shorter duration lookits. See LookitActorQuick() for more info on what this means.
Example
LookitNounQuick("Gabriel", "plant", "EH", 5);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:12:51 PM

[LookitPlayer]

Prototype
LookitPlayer(string actorName, string componentsSpec, float durationSec);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at the player (the center of the screen). Development only.
Example
LookitPlayer("Mosely", "E", 30);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:18:12 PM

LookitPoint

Prototype
LookitPoint(string actorName, float x, float y, float z,
 string componentsSpec, float durationSec);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

x, y, and z are the coordinates of the 3D point for the actor to look at.

componentsSpec is a string specifying what components are involved in the lookit. See docs at top of Actors section for more info.

durationSec is the duration of the lookit in seconds.

Description
Tells an actor to look at a particular point in 3D space. Note: this function is highly scene geometry specific and should be used rarely if ever (it's mainly meant for development and testing).
Example
LookitPoint("Gabriel", 100, 20, 40, "EH", 10);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:20:10 PM

LookitUnlock

Prototype
LookitUnlock(string actorName, string componentsSpec)
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor doing the lookit.

componentsSpec is a string specifying what components are involved in the lookit unlock. See docs at top of Actors section for more info.

Description
This function will immediately unlock an actor’s components (it undoes a LookitLock()).
Example
LookitUnlock("Gabriel", "E"); // release eyes
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 2:22:04 PM

SetActorLocation [*]

Prototype
SetActorLocation(string actorName, string locationName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

locationName is the name of the location (three-character designation).

Description
Sets the actor's location. This does not actually move the actor, but instead sets an internal game variable that can be later queried through IsActorAtLocation() or IsActorOffstage(). Using a location of "" means “offstage” (or you can use SetActorOffstage()).
Example
SetActorLocation("Emilio", "RC1");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:41:17 PM

SetActorOffstage [*]

Prototype
SetActorOffstage(string actorName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

Description
This function sets the actor to be “offstage”. See SetActorLocation() for more info.
Example
SetActorOffstage("Mosely");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:42:28 PM

SetActorPosition [*]

Prototype
SetActorPosition(string actorName, string positionName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

positionName is the name of the position (from the SIF).

Description
This will move the actor to the given position. All it does is change the position – it does not change the animation state, fidgets or anything else. So if the actor is caught halfway through an animation and this function moves them somewhere else, they will continue animating from their new location (assuming it’s relative). Note: upon scene entry, all actors will be reset to their “default” (walking animation frame 0) position, so for SCENE:ENTER scripts it’s ok to just call SetActorPosition() on them if they aren’t using absolute fidgets.
Example
SetActorPosition("Mosely", "CHAIR");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 12:45:50 PM

[SetEyeOffsets]

Prototype
SetEyeOffsets(string actorName, float leftX, float leftY,
 float rightX, float rightY);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

leftX, leftY, rightX, and rightY are the pixel offsets to move the eyes to, where 0,0 is the upper left corner of the eye area as defined in faces.txt. Coordinates are from the texture’s upper-left.

Description
This function will force the eyes to move to the given subpixel-accurate position. It is generally useful for figuring out the bias to use for an actor’s eyes. Keep moving the eyes using this function until they are correct, then take the values you used and add them to the bias in faces.txt. Don’t use this in shipping code.

Note that the eye offsets in faces.txt can move the eyes in full-pixel increments. Generally the bias should be between -1 and +1.
Example
SetEyeOffsets("Gabriel", 0.3, -0.5, 0.7, 0.7);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:03:04 PM

[SetEgo]

Prototype
SetEgo(string actorName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
actorName is the name of the actor (by noun).

Description
Sets the current ego to be the given actor. Normally, ego will be automatically set by the game, so only call this for testing purposes.
Example
SetEgo("Emilio");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 1:48:07 PM

[SetEgoLocationCount]

Prototype
SetEgoLocationCount(string locationName, int count);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
location is the three-character location code. For a list of them all, try DumpLocations().

count is the new value for the ego location count.

Description
This will reset the value of the ego location count for the given location and current timeblock. Use this for testing purposes only – normally, the game automatically handles updating of ego location counts.
Example
SetEgoLocationCount("LBY", 0);
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 1:52:34 PM

SetIdleGAS [*]

Prototype
SetIdleGAS(string actorName, string gasName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

gasName is the name of the .gas file without the extension.

Description
Change the idle fidget for an actor. If gasName is blank then the actor’s idle fidget will be cleared out.
Example
SetIdleGAS("gabriel", "gabe_scratch_self");
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:02:28 PM
Modified so blank gasName clears fidget
1.0.010
9/3/98 4:13:19 PM
Modified so can be waited on
1.0.011
11/2/98 4:20:47 PM

SetListenGAS

Prototype
SetListenGAS(string actorName, string gasName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

gasName is the name of the .gas file without the extension.

Description
Change the listen fidget for an actor. Generally this isn’t necessary as the game’s dialogue manager will deal with this (based on SIF data). If gasName is blank then the actor’s listen fidget will be cleared out.

Example
SetListenGAS("gabriel", "gabe_look_bored");

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 10:57:02 AM
Modified so blank gasName clears fidget
1.0.010
9/3/98 4:13:35 PM
Modified so can be waited on
1.0.011
11/2/98 4:20:52 PM

SetMood [*]

Prototype
SetMood(string actorName, string moodName);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor.

moodName is the name of the mood to enter.

Description
Sets the actor's mood. This requires two .anms exist - an 'on' and an 'off' state. 'mood' is the name of the mood without the ‘on.anm’ / ‘off.anm’ suffix. The ‘on’ animation must place the actor’s face in the mood, and the ‘off’ must return it to the state it was in when the ‘on’ was called. Note that all the enabling and disabling of animations is automatic – just call SetMood(). Also note that animations for the ‘normal’ mood are not required.
Example
SetMood("gabriel", "angry");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:15:33 PM

[SetNextEgo]

Prototype
SetNextEgo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This will set the ego to be the next available actor. This is a good one to bind to a debug key (see BindDebugKey() for more info). Normally, ego will be automatically set by the game, so only call this for testing purposes.
Example
SetNextEgo();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 1:58:48 PM

[SetPrevEgo]

Prototype
SetNextEgo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This will set the ego to be the next available actor. This is a good one to bind to a debug key (see BindDebugKey() for more info). Normally, ego will be automatically set by the game, so only call this for testing purposes.
Example
SetNextEgo();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 2:05:58 PM

SetTalkGAS

Prototype
SetTalkGAS(string actorName, string gasName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

gasName is the name of the .gas file without the extension.

Description
Change the talk fidget for an actor. Generally this isn’t necessary as the game’s dialogue manager will deal with this (based on SIF data). If gasName is blank then the actor’s talk fidget will be cleared out.

Example
SetIdleGAS("gabriel", "gabe_gab");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:04:13 PM
Modified so blank gasName clears fidget
1.0.010
9/3/98 4:13:15 PM
Modified so can be waited on
1.0.011
11/2/98 4:21:04 PM

SetWalkAnim

Prototype
SetWalkAnim(string actorName, string start, string continue,
 string startTurnLeft, string startTurnRight);
Behavior
IMMEDIATE

Parameters
actorName is the name of the actor

start is the animation to use when the actor starts walking

continue is the animation to loop while the actor continues to walk

startTurnLeft and startTurnRight are rotational “turn-and-walk” starting animations. These are both optional and can be left as “”.

Description
Change the current set of walk animations for the actor. Change happens immediately.
Example
SetWalkAnim("Gabriel", "gabstart", "gabcont", "", "");
History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 10:20:20 AM

StartIdleFidget [*]

Prototype
StartIdleFidget(string actorName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

Description
This function initiates the idle fidget for an actor.

Example
StartIdleFidget("taxi_driver");
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:16:43 PM
Modified so can be waited on
1.0.011
11/2/98 4:21:26 PM

StartListenFidget

Prototype
StartListenFidget(string actorName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

Description
This function initiates the listen fidget for an actor. Generally this isn’t necessary as the game’s dialogue manager will deal with this (based on SIF data).

Example
StartListenFidget("taxi_driver");
History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 10:58:06 AM
Modified so can be waited on
1.0.011
11/2/98 4:21:32 PM
StartTalkFidget

Prototype
StartTalkFidget(string actorName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

Description
This function initiates the talk fidget for an actor. Generally this isn’t necessary as the game’s dialogue manager will deal with this (based on SIF data).

Example
StartTalkFidget("girard");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:18:03 PM
Modified so can be waited on
1.0.011
11/2/98 4:21:37 PM

StopFidget [*]

Prototype
StopFidget(string actorName);
Behavior
WAIT

Parameters
actorName is the name of the actor.

Description
This function tells an actor to stop fidgeting. If it’s a complex fidget (involves wandering or something) you will want to wait for it to finish, otherwise the game will give a warning.

Example
StopFidget("wilkes");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:25:51 PM
Function can be waited on
1.0.006
7/13/98 2:07:43 PM

TurnHead [*]

Prototype
TurnHead(string actorName, int percentX, int percentY, int durationMs);
Behavior
WAIT

Parameters
actorName is the name of the actor.

percentX and percentY are percentages from -100% to +100%.

durationMsec specifies how long the head turn should last in milliseconds.

Description
Causes an actor to turn its head in the given direction. Direction is specified using percentages of the maximum angular distance the head can travel, where higher numbers in the x direction are to the actor's right, and higher numbers in the y direction are towards the ceiling.
Example
wait TurnHead("Mosely”, 30, -45, 1000);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:19:01 PM

TurnToModel

Prototype
TurnToModel(string actorName, string modelName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

modelName is the name of the model to turn to.

Description
Turn an actor to face the given model. This function does not cause the actor to walk anywhere. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a 'mod' model. The actor's idle fidget will automatically restart when the turn is finished.

Example
wait TurnToModel("gabriel", "flower");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:01:17 PM

WalkerBoundaryBlockModel

Prototype
WalkerBoundaryBlockModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to add to the walker boundary map.

Description
This function will block out the floor area occupied by the model from the walker boundary map. Call this to make sure that actors cannot walk through a certain area. The block lasts until the next scene exit. All blocks are off by default.
Example
WalkerBoundaryBlockModel("phocurtain");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:21:27 PM

WalkerBoundaryBlockRegion

Prototype
WalkerBoundaryBlockRegion(int regionIndex);
Behavior
IMMEDIATE

Parameters
regionIndex corresponds to the color index used in the original walker boundary bitmap. Must be an integer from 128 to 254.

Description
This function will block out an entire region from the walker boundary using a specific color index to determine which pixels to turn off. Scripts will need a map of indices that are legal to use from the artist in charge of the walker boundaries. Use regions when you need a more precise block than a model can give (models can only use their bounding box, which is always square and is not flexible).
Example
WalkerBoundaryBlockRegion(204);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:37:17 PM

WalkerBoundaryUnblockModel
Prototype
WalkerBoundaryUnblockModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to remove from the walker boundary map.

Description
This function undoes a WalkerBoundaryBlockModel() call.
Example
WalkerBoundaryUnblockModel("phocurtain");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:55:25 PM

WalkerBoundaryUnblockRegion

Prototype
WalkerBoundaryUnblockRegion(int regionIndex);
Behavior
IMMEDIATE

Parameters
regionIndex corresponds to the color index used in the original walker boundary bitmap. Must be an integer from 128 to 254.

Description
This function undoes a WalkerBoundaryBlockRegion() call.
Example
WalkerBoundaryUnblockRegion(204);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 3:56:03 PM

WalkNear

Prototype
WalkNear(string actorName, string positionName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

positionName is the name of the position (specified in a SIF).

Description
Walk an actor near the given position. Waiting will cause the script to pause until the actor has reached their destination. The actor's idle fidget will automatically restart when the walk is finished.

Example
wait WalkNear("estelle", "doorway");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:07:53 PM

WalkNearModel

Prototype
WalkNearModel(string actorName, string modelName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

modelName is the name of the model.

Description
Walk an actor near the given model in the current scene. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a 'mod' model. The actor's idle fidget will automatically restart when the walk is finished.

Example
wait WalkNearModel("estelle", "doorway");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:46:30 PM

WalkTo [*]

Prototype
WalkTo(string actorName, string positionName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

positionName is the name of the position (specified in a SIF).

Description
Walk an actor to the given position. Waiting will cause the script to pause until the actor has reached their destination. The actor's idle fidget will automatically restart when the walk is finished.

Example
wait WalkTo("estelle", "doorway");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:43:03 PM

WalkToAnimation [*]

Prototype
WalkToAnimation(string actorName, string animationName);

Behavior
WAIT

Parameters
actorName is the name of the actor.

animationName is the name of the animation file (without the .anm extension).

Description
Walk an actor to the start of the animation (the animation must contain the actor in order for this to work). This function will end with the actor in the correct position for frame 0 of the animation. Waiting will cause the script to pause until the actor has reached their destination. The actor's idle fidget will automatically restart when the walk is finished.

Example
wait WalkToAnimation("estelle", "drinkcoffee");

History
Comment
Release
Timestamp

Created
1.0.001
6/9/98 1:40:04 PM

WalkToSeeModel [*]

Prototype
WalkToSeeModel(string actorName, string modelName);
Behavior
WAIT

Parameters
actorName is the name of the actor

modelName is the name of a ‘.mod’ model in the scene. Try DoesModelExist() to be sure.

Description
Walk an actor until he can see the given model in the current scene. The actor's idle fidget will automatically restart when the walk is finished.
Example
WalkToSeeModel("Grace", "flowerpot");
History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 10:23:17 AM

[WalkToXZ]

Prototype
WalkToXZ(string actorName, float xPos, float zPos);

Behavior
DEVELOPMENT ONLY, WAIT

Parameters
actorName is the name of the actor.

xPos is the x position on the floor.

zPos is the z position on the floor.

Description
Walk an actor to the given (X,Z) position on the floor. Remember that the G-Engine uses a left-handed coordinate system, and Y is “up”. Waiting will cause the script to pause until the actor has reached their destination. The actor's idle fidget will automatically restart when the walk is finished.

Example
wait WalkToXZ("estelle", -39.20, 10.05);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:45:23 PM
Made function development mode only
1.0.006
7/13/98 2:09:30 PM

WasEgoEverInLocation [*]

Prototype
int WasEgoEverInLocation(string locationName);
Behavior
IMMEDIATE

Parameters
location is the three-character location code. For a list of them all, try DumpLocations().

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the ego was ever here.

Description
The game keeps track of how many times ego was in each location for each timeblock. These values (for the current timeblock) can be queried using GetEgoLocationCount(), but WasEgoEverInLocation() will check to see if the ego was in a given location for any timeblock.
Example
was$ = WasEgoEverInLocation("RC1");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 2:12:53 PM

Animation and Dialogue

This category contains general animation and dialogue Sheep functions.
[AddCaptionDefault]
Prototype
AddCaptionDefault(string captionText);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
captionText is the text to add to the caption.

Description
Add text to the caption in the "default" (everybody else) font. Note: as with all caption functions, this kind of thing should be left up to the dialogue manager (by playing license plates). Calling this function should be for testing only.

Example
AddCaptionDefault("yer nay-am's Gabriel");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:23:27 PM

[AddCaptionEgo]
Prototype
AddCaptionEgo(string captionText);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
captionText is the text to add to the caption.

Description
Add text to the caption in the "ego" font. Note: as with all caption functions, this kind of thing should be left up to the dialogue manager (by playing license plates). Calling this function should be for testing only.

Example
AddCaptionEgo("mah nay-am's Gabriel");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:24:55 PM

[AddCaptionVoiceOver]
Prototype
AddCaptionVoiceOver(string captionText);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
captionText is the text to add to the caption.

Description
Add text to the caption in the "voice-over" font. Note: as with all caption functions, this kind of thing should be left up to the dialogue manager (by playing license plates). Calling this function should be for testing only.

Example
AddCaptionVoiceOver("ah wander what mah nay-am ay-yahs");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:25:38 PM

[AnimEvent]

Prototype
AnimEvent(string eventType, string eventData);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
eventType is the name of the custom event type.

eventData is the event-specific data to pass along to the event.

Description
Create and execute a custom GK3 event type. See the ANM system docs to see what is available. Note that this does not currently work for GEngine events (MVISIBILITY and friends).
Example
AnimEvent("MOOD", "Gabriel,Angry");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:02:38 PM

[ClearCaptionText]

Prototype
ClearCaptionText();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
The text in the caption area is cleared. Note: as with all caption functions, this kind of thing should be left up to the dialogue manager (by playing license plates), so only use this for testing.

Example
ClearCaptionText();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 11:03:50 AM
Made function development mode only
1.0.006
7/13/98 2:13:33 PM

ContinueDialogue [*]

Prototype
ContinueDialogue(int numLines);
Behavior
WAIT

Parameters
numLines is the number of lines to continue playing.

Description
Continues the last dialogue that was started for the # lines specified. Must have called StartDialogue() previously.

Example
ContinueDialogue(4);

History
Comment
Release
Timestamp

Created
1.0.004
6/19/98 4:15:00 PM

ContinueDialogueNoFidgets

Prototype
ContinueDialogueNoFidgets(int numLines);
Behavior
WAIT

Parameters
numLines is the number of lines to continue playing.

Description
Continues the last dialogue that was started for the # lines specified. Must have called StartDialogue() previously. This function is identical to ContinueDialogue() except that it does not automatically do the talk/listen fidgets.

Example
ContinueDialogueNoFidgets(4);

History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:03:52 PM

[DisableInterpolation]

Prototype
DisableInterpolation();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Disables animation interpolation for the current game, including anything that is already running.
Example
DisableInterpolation();
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:51:54 PM

[DumpAnimator]

Prototype
DumpAnimator();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the GK3 Animator to the 'dump' stream. Includes all current actors, animations, and morphs.
Example
DumpAnimator();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 3:58:18 PM

[EnableInterpolation]

Prototype
EnableInterpolation();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Enables animation interpolation for the current game, including anything that is already running.
Example
EnableInterpolation();
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:52:55 PM

EndConversation

Prototype
EndConversation();

Behavior
WAIT

Description
End the current conversation, if any. This is normally done automatically by the topic chooser but can be done manually via Sheep if necessary.

Example
EndConversation();

History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 3:53:18 PM
Changed function to be WAIT-able
1.0.012
12/7/98 4:04:38 PM

LoopAnimation [*]

Prototype
LoopAnimation(string animationName);

Behavior
IMMEDIATE

Parameters
animationName is the name of the animation to play (the .anm file without the extension).

Description
The animation is looped indefinitely until either the involved models are destroyed (this can happen when moving to a different scene) or if StopAnimation() is called.

Example
LoopAnimation("spin_fan");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:49:02 PM

SetConversation [*]

Prototype
SetConversation(string conversationName);

Behavior
WAIT

Parameters
conversationName is the name of the conversation to set as current. Defined in the SIF.

Description
Tells the game which conversation to use. Activates a set of cameras (from SIF data), puts actors into their ‘listen’ fidget, and possibly starts a set of “begin talking” animations. This will typically be called from the <noun>:TALK:DIALOGUE_TOPICS_LEFT action response.

Example
SetConversation("argument");

History
Comment
Release
Timestamp

Created
1.0.004
6/19/98 4:18:19 PM
Function now waitable
1.0.006
7/13/98 2:34:58 PM

StartAnimation [*]

Prototype
StartAnimation(string animationName);

Behavior
WAIT

Parameters
animationName is the name of the animation to play (the .anm file without the extension).

Description
This starts an animation that will play exactly once. Waiting will cause the script to pause until the animation has run to completion.

Example
wait StartAnimation("drinkpop");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:57:24 PM

StartDialogue [*]

Prototype
StartDialogue(string licensePlate, int numLines);

Behavior
WAIT

Parameters
licensePlate is the full license plate identifier without any '.' characters. The license plate can be copied directly from Message Editor.

numLines is the number of lines of dialogue to play.

Description
Start a license plate as one or more lines of dialogue. Waiting will cause the script to pause until the dialogue has run to completion.

Example
wait StartDialogue("0G6130LPF1", 4);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 3:57:29 PM

StartDialogueNoFidgets

Prototype
StartDialogueX(string licensePlate, int numLines);

Behavior
WAIT

Parameters
licensePlate is the full license plate identifier without any '.' characters. The license plate can be copied directly from Message Editor.

numLines is the number of lines of dialogue to play.

Description
Start a license plate as one or more lines of dialogue. Waiting will cause the script to pause until the dialogue has run to completion. This function is identical to StartDialogue() except that it does not do the talk/listen fidgets.

Example
wait StartDialogue("0G6130LPF1", 4);

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:55:35 PM

StartMom [*]

Prototype
StartMom(string momAnimationName);
Behavior
WAIT

Parameters
momAnimationName is the name of the mother-of-all-animations file to play without the .mom extension.

Description
This function starts a “MOM” animation that will play exactly once. Waiting will cause the script to pause until the animation has run to completion.
Example
StartMom("EmlIntro");
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 3:55:46 PM

StartMorphAnimation

Prototype
StartMorphAnimation(string animationName, int animStartFrame, int morphFrames);
Behavior
WAIT

Parameters
animationName is the name of the animation file to morph to without the .anm extension.

animStartFrame is the frame of the animation file to morph to.

morphFrames is the number of frames to use for the morph (includes the final frame but not the starting frame).

Description
This function starts a morph of one or more models to a relative or absolute animation. The .anm file is only required for the action (.act) files that it uses – no other types of events (such as sound) are sent as the result of calling this function. This function may not be run at the same time another animation or morph is running that involves any of the same models.

Example
StartMorphAnimation("emllbystandup", 0, 10);
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:03:54 PM

StartMoveAnimation

Prototype
StartMoveAnimation(string animationName);
Behavior
WAIT

Parameters
animationName is the name of the animation to play without the .anm extension.

Description
Start an animation that will play exactly once. This function is identical to StartAnimation() except that it is allowed to move characters.
Example
StartMoveAnimation("EmlIntro");
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:57:24 PM

StartVoiceOver [*]

Prototype
StartVoiceOver(string licensePlate, int numLines);

Behavior
WAIT

Parameters
licensePlate is the full license plate identifier without any '.' characters. The license plate can be copied directly from Message Editor.

numLines is the number of lines of dialogue to play.

Description
Start a license plate as one or more lines of voice-over talking (usually ego responding to a “inspect <noun>” or something – thinking out loud). Waiting will cause the script to pause until the voice-over has run to completion.

Example
wait StartVoiceOver("0G6372FUE0", 2);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:04:39 PM

[StartYak]

Prototype
StartYak(string yakAnimationName);
Behavior
DEVELOPMENT ONLY, WAIT

Parameters
yakAnimationName is the name of the dialogue file to play without the .yak extension.

Description
This function starts a “YAK” animation that will play exactly once. Waiting will cause the script to pause until the animation has run to completion. This is generally meant for development only – production code should use StartDialogue() instead (which automatically handles localization).
Example
StartYak("Test");
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 3:59:17 PM

[StopAllAnimations]

Prototype
StopAllAnimations();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Stop all animations immediately. Use in combination with NukeAllSheep() for easier abort-and-retest cycles.

Example
StopAllAnimations();

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 2:23:01 PM

[StopAllMorphAnimations]

Prototype
StopAllMorphAnimations();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Stop all morph animations immediately. Use in combination with NukeAllSheep() for easier abort-and-retest cycles.
Example
StopAllMorphAnimations();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:05:26 PM

StopAnimation

Prototype
StopAnimation(string animationName);

Behavior
IMMEDIATE

Parameters
animationName is the name of the animation to stop playing (the .anm file without the extension).

Description
Stop an animation immediately. This function should only be used in special cases.

Example
StopAnimation("moonthecamera");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:06:39 PM

StopMorphAnimation

Prototype
StopMorphAnimation(string animationName);
Behavior
IMMEDIATE

Parameters
animationName is the name of the animation that is being morphed to (the .anm file without the extension).

Description
Stop a morphing animation immediately. This function should only be used in special cases.
Example
StopMorphAnimation("emllbystandup");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:06:36 PM

Application

This category contains Sheep functions meant to mess with the general GK3 game application.

[AddPath]

Prototype
AddPath(string pathName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
pathName is the name of the path(s) to add. It’s actually a path spec. The format for this parameter is identical to the format required by the GK3.INI paths directives.

Description
Add a new resource search path to the system.
Example
AddPath("!c:\\temp\\override*");
History
Comment
Release
Timestamp

Created
1.0.007
12/10/98 1:29:45 PM

[DumpBuildInfo]

Prototype
DumpBuildInfo();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump build information about the executable. Useful if you’re curious what version you’re running.

Example
DumpBuildInfo();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:09:29 PM

[DumpLayerStack]

Prototype
DumpLayerStack();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump information about the current layer stack. Useful to debug problems with pushing and popping game layers.

Example
DumpLayerStack();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 1:29:38 PM

[Edit]

Prototype
Edit(string filename);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
filename is the name of the filename to edit. It may either be a plain filename (don’t forget the extension!) in which case GK3 will check its indexes to find the file, or it may be a fully-qualified filename with path info.

Description
This function will cause the GK3 editor to edit the given file. The “GK3 editor” is defined in the INI file under the [APP] section as “Text Editor”. By default, it’s just Windows notepad. Remember to prefix any backslashes in the path with another backslash (as per Sheep convention).
Example
Edit("gabtalk.gas");
Edit("j:\\proj\\gk3\\test.txt");
History
Comment
Release
Timestamp

Created
1.0.007
7/27/98 5:18:20 PM

[ForceQuitGame]

Prototype
ForceQuitGame();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Immediately quit the game, bypassing any 'are you sure?' dialog boxes. Normally this is handled by the game.

Example
ForceQuitGame();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:17:42 PM
Made function development mode only
1.0.006
7/13/98 2:57:15 PM

[FullReset]

Prototype
FullReset();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force a full reset of the game without needing to reload it. Clears caches, unloads everything, re-enters the scene (if currently in one).
Example
FullReset();
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:58:27 PM

[FullScanPaths]

Prototype
FullScanPaths();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force a full scan of all paths. Indexes any paths that have not been indexed yet. Use this up front to sacrifice a little extra initial load time for faster game play.
Example
FullScanPaths();
History
Comment
Release
Timestamp

Created
1.0.008
8/7/98 11:06:59 AM

[Open]

Prototype
Open(string filename);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
filename is the name of the filename to open. It may either be a plain filename (don’t forget the extension!) in which case GK3 will check its indexes to find the file, or it may be a fully-qualified filename with path info.

Description
This function will ask Windows to “Open” the given file. How exactly Windows does this depends on how you have the file association set up. For example, by default, your .anm files probably aren’t mapped to anything…in which case calling this function on one will fail. To set up file associations, use the View|Options|File Types dialog box from the Windows Explorer.
Example
Open("gabtalk.gas");
Open("j:\\proj\\gk3\\test.txt");
History
Comment
Release
Timestamp

Created
1.0.007
7/27/98 5:20:56 PM

[QuitApp]

Prototype
QuitApp();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Quit the game. This function “nicely” requests a game shutdown, allowing the user the chance to save, asking them if they’re sure and all that fun stuff.

Example
QuitApp();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:22:03 PM
Made function development mode only
1.0.006
7/13/98 2:57:54 PM

[RefreshScreen]

Prototype
RefreshScreen();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force a full screen invalidation and repaint. If you notice any annoying weird flashing, try this.

Example
RefreshScreen();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:11:04 PM
Made function development mode only
1.0.006
7/13/98 2:58:19 PM

[RescanPaths]

Prototype
RescanPaths();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force a rescan of file paths. Dumps the indexes and file map and will start searching for paths all over again using the existing file path specs. Use this when you need indexes to be rebuilt because you’ve added or removed a file on the network or local drive.
Example
RescanPaths();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 2:59:45 PM

ScreenShot

Prototype
ScreenShot();
Behavior
IMMEDIATE

Description
Take a screenshot and put it in the current directory as screenshot_xxx.bmp, where x is a number that gets incremented. Works in hardware mode too.
Example
ScreenShot();
History
Comment
Release
Timestamp

Created
1.0.008
8/7/98 11:08:33 AM

[ScreenShotX]

Prototype
ScreenShotX(string filename);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
filename is the name of the file to save the screen shot as.

Description
Take a screenshot and store it with the name filename. If filename contains path info, then the game uses that, otherwise it goes into the current directory.
Example

History
Comment
Release
Timestamp

Created
1.0.00?

ShowBinocs

Prototype
ShowBinocs();
Behavior
IMMEDIATE

Description
Show the binoculars interface.
Example
ShowBinocs();
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:59:13 PM

ShowDrivingInterface

Prototype
ShowDrivingInterface();
Behavior
IMMEDIATE

Description
Show the driving interface. This will only be used from moped Sheep code.
Example
ShowDrivingInterface();
History
Comment
Release
Timestamp

Created
1.0.008
8/7/98 11:10:41 AM

ShowFingerprintInterface

Prototype
ShowFingerprintInterface(string nounName);
Behavior
IMMEDIATE

Parameters
nounName is the name of the noun to show when the interface is brought up.

Description
Show the fingerprint interface. This will only be used from fingerprint kit Sheep code.
Example
ShowFingerprintInterface("mosely");
History
Comment
Release
Timestamp

Created
1.0.014
2/17/99 5:26:55 PM
Added param
1.0.016
2/25/99 12:35:37 PM

ShowSidney

Prototype
ShowSidney();
Behavior
IMMEDIATE

Description
Show the Sidney interface.
Example
ShowSidney();
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 3:59:48 PM

[StartGame]

Prototype
StartGame();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Start the game. Really only useful from the title screen - same as hitting ‘Play’. Executed in other places will stage-switch to R25110a.

Example
StartGame();

History
Comment
Release
Timestamp

Created
1.0.004
6/19/98 4:19:51 PM
Made function development mode only
1.0.006
7/13/98 3:00:09 PM

Camera

This category contains Sheep functions meant to mess with the 3D camera within a scene (or possibly an inset).

CameraBoundaryBlockModel

Prototype
CameraBoundaryBlockModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to add to the camera boundary set.

Description
This function will add the given model to the list of models used when determining illegal areas for the camera to be in. It will block the camera from moving there. The block lasts until the next scene exit. All blocks are off by default. Note that this function is meant for static models (they do not animate or move), so do not use on actors or other animating props.
Example
CameraBoundaryBlockModel("phocurtain");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:17:01 PM

CameraBoundaryUnblockModel

Prototype
CameraBoundaryUnblockModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to remove from the camera boundary set.

Description
This function undoes a CameraBoundaryBlockModel() call.
Example
CameraBoundaryUnblockModel("phocurtain");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:17:57 PM

CutToCameraAngle [*]

Prototype
CutToCameraAngle(string cameraName);

Behavior
IMMEDIATE

Parameters
cameraName must be a label from a SIF.

Description
Immediately cut to a camera angle.

Example
CutToCameraAngle("toiletbullseye");

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:07:43 PM

[CutToCameraAngleX]

Prototype
CutToCameraAngleX(float horizAngle, float vertAngle, float x, float y, float z);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
horizAngle and vertAngle are the angles to use for the camera.

x, y, and z are the 3D coordinates of the camera eye.

Description
Immediately cut to a hard-coded camera angle. This is useful for demo or test scripts and such. Do not use in production code – add a SIF camera instead.

Example
CutToCameraAngleX(30.5, -15.2, 10, 20, 30);

History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:20:09 PM

DefaultInspect [*]

Prototype
DefaultInspect(string noun);

Behavior
WAIT

Parameters
noun is the name of the noun that the camera will be set to “inspect”. Inspecting a noun will mean that the camera just glides to a closeup, possibly an inset, depending on whether or not we’ve got 3D hardware.

Description
Glides the camera to the default inspect camera angle for the given noun. Nouns are assigned to models in a SIF. If an inspect camera has not been defined for a given noun (also in a SIF) then one will be automatically generated.

Example
DefaultInspect("lamp");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:26:23 PM
Changed to waitable (using glides now)
1.0.008
8/7/98 11:11:14 AM

[DisableCameraBoundaries]

Prototype
DisableCameraBoundaries();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Turn off camera boundaries so you can go through walls and such. Only affects the camera, not the ego.
Example
DisableCameraBoundaries();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:01:43 PM

[DumpCamera]

Prototype
DumpCamera();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the info for the current scene camera to the console. This includes horizontal and vertical angles, the XYZ position, field of view setting, whether or not smooth motion is enabled, and whether or not boundaries are enabled.

Example
DumpCamera();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:29:18 PM

[DumpCameraAngles]

Prototype
DumpCameraAngles();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names and coordinates of all the available camera angles in the game. Camera angles are generally defined in SIFs. This function is useful if you forgot the name of a camera angle and want to see what is available.

Example
DumpCameraAngles();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:29:59 PM

[EnableCameraBoundaries]

Prototype
EnableCameraBoundaries();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Turn on camera boundaries. Only affects the camera, not the ego.
Example
EnableCameraBoundaries();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:03:08 PM

ForceCutToCameraAngle

Prototype
ForceCutToCameraAngle(string cameraName);

Behavior
IMMEDIATE

Parameters
cameraName must be a label from a SIF.

Description
Immediately cut to a camera angle. This function is the same as ForceCutToCameraAngle() except that it ignores any user settings for cinematics.

Example
CutToCameraAngle("monkeycage");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 2:38:46 PM

[GetCameraAngleCount]

Prototype
int GetCameraAngleCount();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns the number of available camera angles.

Description
Use this with GetIndexedCameraAngle() for demos.

Example
count$ = GetCameraAngleCount();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 2:45:27 PM

GetCameraFOV

Prototype
float GetCameraFOV();

Behavior
IMMEDIATE

Return Value
Returns a float for the field of view of the current camera.

Description
Use this to query the current field of view for the camera. Field of view is the width of the camera’s view in the 3D viewport.

Example
fov$ = GetCameraFOV();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:32:30 PM

[GetIndexedCameraAngle]

Prototype
string GetIndexedCameraAngle(int index);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
index is the index of the camera angle. Camera angles are alphabetically ordered. Use GetCameraAngleCount() to retrieve the total number of cameras available.

Return Value
Returns the camera angle’s name (retrieved by index).

Description
Use this to iterate through camera angles, say, for a demo.

Example
CutToCameraAngle(GetIndexedCameraAngle(5));

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 2:40:16 PM

GlideToCameraAngle [*]

Prototype
GlideToCameraAngle(string cameraName);

Behavior
WAIT

Parameters
cameraName must be a label from a SIF.

Description
Glide to a camera angle. May cut depending on user settings (if they have a dog-slow machine, they may have it set to cut instead).

Example
wait GlideToCameraAngle(“toiletbullseye”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:08:40 PM

InspectObject

Prototype
InspectObject();

Behavior
WAIT

Description
Glide to an inspect camera for the current object. If gliding is turned off in user options then this will just cut or skip.

Example
InspectObject();

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:02:19 PM

SetCameraFOV

Prototype
SetCameraFOV(float fieldOfView);

Behavior
IMMEDIATE

Parameters
fieldOfView is the new field of view to use for the camera.

Description
Sets the camera's current field of view. Use something between 40 and 60 for good results. Larger values let the camera “see” more (good for closeups), but screw up the perspective. Smaller values generally look more realistic but may be annoying to navigate with. The game will ship with a hard coded field of view value, so use this function only in special cases like when Gabe eats the shrooms on day 2. Generally avoid using this function and use the SIF’s ability to edit camera angle FOV’s directly.

Example
SetCameraFOV(45);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:36:36 PM

SetCameraGlide

Prototype
SetCameraGlide(int glide);

Behavior
IMMEDIATE

Parameters
glide is a boolean enabling value - 1 or 0.

Description
Sets whether or not the camera can glide (smooth motion) from point to point.

Example
SetCameraGlide(0);

History
Comment
Release
Timestamp

Created
1.0.016
2/25/99 12:42:02 PM

Uninspect

Prototype
Uninspect();

Behavior
WAIT

Description
Glide to the camera used before inspecting the current object. If gliding is turned off in user options then this will just cut or skip.

Example
Uninspect();

History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:21:35 PM

Construction Mode

This category contains Sheep functions meant to mess with construction mode (accessed via the tab key in nonproduction versions of the game). None of these functions will ship in the final product – they are all debug-only.

[CreateCameraAngleGizmo]

Prototype
string CreateCameraAngleGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns the name of the newly created camera angle gizmo.

Description
This function will create a camera angle and a gizmo to control it. Use the returned name to manipulate it. The created gizmo appears at the current user camera position.
Example
PrintString(CreateCameraAngleGizmo());
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:25:09 PM

[CreateCameraAngleGizmoX]

Prototype
string CreateCameraAngleGizmoX(float horizAngle, float vertAngle,
 float x, float y, float z);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
horizAngle and vertAngle are the angles to use for the camera.

x, y, and z are the 3D coordinates of the camera eye.

Return Value
Returns the name of the newly created camera angle gizmo.

Description
This function will create a camera angle and a gizmo to control it. Use the returned name to manipulate it. The created gizmo appears at the given coordinates.
Example
CutToCameraAngle(CreateCameraAngleGizmoX(0, 0, 10, 20, 30));
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:27:22 PM

[CreatePositionGizmo]

Prototype
string CreatePositionGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns the name of the newly created position gizmo.

Description
This function will create a position and a gizmo to control it. Use the returned name to manipulate it. The created gizmo appears directly beneath the current user camera position.
Example
position$ = CreatePositionGizmo();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:28:37 PM

[CreatePositionGizmoX]

Prototype
string CreatePositionGizmoX(float heading, float x, float z);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
heading is the direction the position is pointing.

x and z are the 3D floor coordinates to create the position at.

Return Value
Returns the name of the newly created position gizmo.

Description
This function will create a position and a gizmo to control it. Use the returned name to manipulate it. The created gizmo appears at the given coordinates.
Example
WalkTo("Gabriel", CreatePositionGizmoX(180, 40, 50));
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:30:24 PM

[HideAmbientMapGizmo]

Prototype
HideAmbientMapGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Hide the ambient map gizmo if it is shown.
Example
HideAmbientMapGizmo();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:31:01 PM

[HideCameraAngleGizmo]

Prototype
HideCameraAngleGizmo(string cameraName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera angle whose gizmo you want to hide.

Description
Hide the given camera angle gizmo if it is shown.
Example
HideCameraAngleGizmo("default");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:32:01 PM

[HideConstruction]

Prototype
HideConstruction();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Hide construction mode. Only works in a scene.
Example
HideConstruction();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:32:38 PM

[HidePositionGizmo]

Prototype
HidePositionGizmo(string positionName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
positionName is the name of the position whose gizmo you want to hide.

Description
Hide the given position gizmo if it is shown.
Example
HidePositionGizmo("Start");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:33:40 PM

[HideWalkerBoundaryGizmo]

Prototype
HideWalkerBoundaryGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Hide the walker boundary map if it is shown.
Example
HideWalkerBoundaryGizmo();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:34:31 PM

[SetSceneViewport]

Prototype
SetSceneViewport(int xPercent, int yPercent,
 int widthPercent, int heightPercent);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
xPercent and yPercent are integers from 0 to 100 where 0,0 is the left/top of the screen and 100,100 is the lower right of the screen.

widthPercent and heightPercent are integers from 0 to 100 where 0,0 is no size and 100,100 is the full screen size.

Description
Set the scene viewport size to the given coordinates. Only works in construction mode.
Example
SetSceneViewport(20, 20, 60, 50);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:36:49 PM

[ShowAmbientMapGizmo]

Prototype
ShowAmbientMapGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Show the ambient map gizmo if it is hidden.
Example
ShowAmbientMapGizmo();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:37:53 PM

[ShowCameraAngleGizmo]

Prototype
ShowCameraAngleGizmo(string cameraName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera angle whose gizmo you want to show.

Description
Show the given camera angle gizmo if it is hidden.
Example
ShowCameraAngleGizmo("default");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:38:10 PM

[ShowConstruction]

Prototype
ShowConstruction();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Show construction mode. Only works in a scene.
Example
ShowConstruction();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:38:24 PM

[ShowPositionGizmo]

Prototype
ShowPositionGizmo(string positionName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
positionName is the name of the position whose gizmo you want to show.

Description
Show the given position gizmo if it is hidden.
Example
ShowPositionGizmo("Start");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:38:44 PM

[ShowWalkerBoundaryGizmo]

Prototype
ShowWalkerBoundaryGizmo();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Show the walker boundary map if it is hidden.
Example
ShowWalkerBoundaryGizmo();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:38:57 PM

[TextInspectCameraGizmo]

Prototype
TextInspectCameraGizmo(string cameraName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera angle whose gizmo you want to inspect.

Description
Inspect the given camera angle gizmo as text.
Example
TextInspectCameraGizmo("entry");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:40:38 PM

[TextInspectCameraGizmoX]

Prototype
TextInspectCameraGizmoX(string cameraName, int xPercent,
 int yPercent, int fontSize);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera angle whose gizmo you want to inspect.

xPercent and yPercent specify the origin of the inspect window in percentages of screen space.

fontSize is a value from 0 to 2, smallest to largest.

Description
Inspect the given camera angle gizmo as text. Same as TextInspectCameraGizmo() except more control over where and how the inspect window is placed.
Example
TextInspectCameraGizmoX("lh2_head", 12, 80, 2);
History
Comment
Release
Timestamp

Created
1.0.016
2/25/99 12:45:37 PM

[TextInspectPositionGizmo]

Prototype
TextInspectPositionGizmo(string positionName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
positionName is the name of the position whose gizmo you want to inspect.

Description
Inspect the given position gizmo as text.
Example
TextInspectPositionGizmo("floor1");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:41:39 PM

[TextInspectPositionGizmoX]

Prototype
TextInspectPositionGizmoX(string positionName, int xPercent,
 int yPercent, int fontSize);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
positionName is the name of the position whose gizmo you want to inspect.

xPercent and yPercent specify the origin of the inspect window in percentages of screen space.

fontSize is a value from 0 to 2, smallest to largest.

Description
Inspect the given position gizmo as text. Same as TextInspectPositionGizmo() except more control over where and how the inspect window is placed.
Example
TextInspectPositionGizmoX("floor1", 10, 20, 0);
History
Comment
Release
Timestamp

Created
1.0.016
2/25/99 12:47:57 PM

[ViewportInspectCameraGizmo]

Prototype
ViewportInspectCameraGizmo(string cameraName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera whose gizmo you want to inspect.

Description
Inspect the given camera angle in a viewport.
Example
ViewportInspectCameraGizmo("gabcu1");

History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:42:38 PM

[ViewportInspectCameraGizmoX]

Prototype
ViewportInspectCameraGizmoX(string cameraName, int xPercent,
 int yPercent, int widthPercent,
 int heightPercent);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
cameraName is the name of the camera whose gizmo you want to inspect.

xPercent and yPercent are integers from 0 to 100 where 0,0 is the left/top of the screen and 100,100 is the lower right of the screen.

widthPercent and heightPercent are integers from 0 to 100 where 0,0 is no size and 100,100 is the full screen size.

Description
Inspect the given camera angle gizmo in a viewport, where the location and size of the viewport is specified in percentages of overall screen size.
Example
ViewportInspectCameraGizmoX("entry2", 80, 10, 20, 90);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:44:20 PM

Debugging

All of the functions in this category exist only in nonproduction versions of the game. When compiling for production modes, they get “compiled out” and end up doing nothing.

Note on debug flags: these only exist in nonproduction versions of the game. By default, they are all turned off (exceptions are noted). Here is a catalog of current debug flags and what they do:

GK3 Debug Flags

Antialias
Turns on antialiasing. This feature is currently for testing only and only works for the upper left corner of the screen.

CameraFlashlight
The current camera vector determines dynamic (model) lighting.
ConsoleAutoHelp
Controls whether or not the console automatically prints help for a command when it gets “template-expanded” (you hit space after typing in its name and it fills out the arguments for you). This option is on by default.

ConsoleAutoPopup
Controls whether or not the console automatically pops up when data is written to it. Be careful when turning this option off – you may end up not seeing important warnings and errors. This option is on by default.

DisableActorBlink
This will turn off the periodic blinking animations that play for actors. Generally this isn’t useful for anything except when debugging the Animator class and friends.
DisableCaptions
Turn off printing of captions.
DisableDirtyZBuffer
Turn off “dirtying” of the Z-buffer. The fun never stops!
DumpRawSheepOnCompile
Dump raw sheep code as it gets compiled. Use for post-mortems.

FakeQA
This does a “fake QA” mode – usage of development mode-only Sheep functions are flagged as errors rather than ignored. Also enables other QA-only features (most TBD, but generally is tracking code).

FlattenDirtyRects
Flatten dirty rects before painting with them.

FlattenExact
When flattening, use an exact algorithm (don’t union them, divide down by strips).
ShowDebugToolTips
Shows extra debugging info on tooltips. Depends on what the tooltip is for. For example, the verb chooser’s debug text for a tooltip is the verb that it corresponds to.

ShowDirtyRects
If this debug flag is set, then every time a region of the screen is “invalidated” it will be framed with a rectangle upon validation of dirty rects. This is useful for seeing just what exactly is being repainted during each frame.

ShowFontDirtyRects
This is similar to the ShowDirtyRects debug flag except it applies to fonts on a character-by-character basis.

ShowStats
This debug flag controls the display of graphics engine statistics such as frames per second, memory used in the card, triangles, etc. Note that the display varies in software mode vs. hardware mode.

TraceCamera
Every time the camera moves it checks this debug flag. If set, it will dump its new position to the “Status” stream. Turn this on to see your camera position continuously updated as you move it around.

TraceCollision
Traces construction of the collision map used in the A* pathfinding algorithm for wandering actors (including ego).

TraceFrameTicks
Traces the delay between frames. Every frame the current time and frame number will be dumped to the “Status” stream.

TraceSceneClicks
Turn this on to get information about where you clicked – what you “hit”, and the position of the hit. Dumps to the “Status” stream.

TraceSheepActivity
When enabled, major Sheep activity will be traced to the “SheepMachine” stream. This includes when Sheep functions start, are blocked, are released, and when they exit. A “blocked” function is one that has hit a wait tag. The function is released when the wait is fulfilled.

TraceSheepOpCodes
When enabled, Sheep “op codes” will be traced to the “SheepMachine” stream as they are executed in the virtual machine.

TraceSheepStack
When enabled, internal Sheep stack operations will be traced to the “SheepMachine” stream as they are executed in the virtual machine. Note that unlike other Sheep tracing debug flags, this one won’t print out the name of the Sheep or function currently executing. Use with TraceSheepOpCodes to get context.

TraceSheepStats
Traces statistics for certain Sheep function activity. Used for performance and usage testing.

G-Engine Debug Flags

Resources
Trace resource loading and unloading.

CheckSceneTex
Report list of missing scene textures.

LockCounts
Report lock counts when exiting (viewable in debugger only).

UseDefaultRes
Use default resource if requested resource not found.

TexMgrStats
Show texture manager statistics.

ShowTexSizes
Show texture sizes using color-coded textures.

TrackLocks
Track locking and unlocking of GObject derivatives.

TrackNotifies
Track usage of GNotify objects.

ShowBoundBoxes
Show bound boxes on models (HW only).

ShowLightmaps
Only render light maps.
ShowSurfaces
Show distinct surfaces with random color coding.

ShowSurfSizes
Show surface sizes in software mode.

BuildAmbients
Enable dialog box that will detect and build ambient maps that are out of date.

C/C++ Run-Time Library Debug Flags

[Note: these debug flags are only available in debug mode. Docs are straight from VC++ help.]

CrtAllocMem
ON: Enable debug heap allocations and use of memory block type identifiers, such as _CLIENT_BLOCK.

OFF: Add new allocations to heap's linked list, but set block type to _IGNORE_BLOCK.

CrtCheckAlways
ON: Call _CrtCheckMemory at every allocation and deallocation request.

OFF: _CrtCheckMemory must be called explicitly.

CrtCheckCrt
ON: Include _CRT_BLOCK types in leak detection and memory state difference operations.

OFF: Memory used internally by the run-time library is ignored by these operations.

CrtDelayFreeMem
ON: Keep freed memory blocks in the heap's linked list, assign them the _FREE_BLOCK type, and fill them with the byte value 0xDD.

OFF: Do not keep freed blocks in the heap's linked list.

[AddTemplate]

Prototype
AddTemplate(string template, string expandedText, int removeTemplate);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
template is the name of the template to add – it can be any combination of letters, numbers, and the underscore character (_). If the name already exists as a template, then this overwrites it.

expandedText is the string to expand with. Can be any string.

removeTemplate is whether or not to remove the old text. Must be 0 (no) or 1 (yes).

Description
Create a Sheep “template” for the console. A template is a string that is expanded whenever you hit the space bar after typing in the template name. It’s useful for saving typing. If removeTemplate is true, then the template text is removed before the expansion occurs, otherwise it’s left there. If the expandedText value has the ampersand (&) character, then the cursor will be placed there after the expansion occurs. See InsertConsole() for more information (that’s what this function calls indirectly). In the example below, typing “cs” and then hitting space on the command line will make it much easier to call a Sheep function.

Note: the expandedText parameter may be equal to the name of a Sheep function. If it is, then it expands the full prototype for the function.

Example
AddTemplate("cs", "CallSheep", 1);
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:21:42 PM

[Alias]

Prototype
Alias(string alias, string sheepCommand);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
alias is the name of the alias. Can be any string.

sheepCommand is a set of any valid Sheep statements (separated by semicolons of course). Remember to prefix any quote characters in the command with a backslash (see the language section on how to escape characters).

Description
An alias is a way to bind a Sheep command to a command for the console. The console first checks its list of aliases before it attempts to execute it as Sheep. If it finds the text in the alias list, then it replaces the text with the Sheep command it’s been mapped to and executes that instead. In the example below, typing “test” will start the first function in test.shp.
Example
Alias("test", "CallDefaultSheep(\"test\")");

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:35:42 PM

[BindDebugKey]

Prototype
BindDebugKey(string keyName, string sheepCommand);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
keyName is the name of the debug key. This can be a letter key (“A” through “Z”), a number key (“0” through “9”), a symbol key (“-”, “=”, “[”, “]”, “\”, “;”, “'”, “,”, “.”, or “/”), or one of the following values (don’t forget the quotes!):

numlock
f1
numpad0
capslock
f2
numpad1
scrolllock
f3
numpad2
pause
f4
numpad3
backspace
f5
numpad4
enter
f6
numpad5
tab
f7
numpad6

f8
numpad7
insert
f9
numpad8
delete
f10
numpad9
home
f11

end
f12
numpad*
pageup

numpad+
pagedown

numpad-

numpad.
left

numpad/
right
down
up

sheepCommand is the Sheep command(s) to run when the debug key is hit. See the note in the description.

Description
This function “binds” a Sheep command or series of commands to a debug key. In order to use a debug key you need to hold down the tilde key (the same one you use to toggle the console) like it’s a shift key, and then hit the debug key. This will run the bound Sheep script. This is useful for making quick shortcuts to commonly-run Sheep commands. Put a bunch of BindDebugKey() calls into your autoexec.shp to automatically configure these every time you start up the game.

Important note: if you use \ (backslash), ' (single quote), or " (double quotes) within the Sheep command (like in the example below) then you need to “escape” it with the backslash (\) key. Otherwise, when the compiler sees the quote it will think it’s the end of the command and give an error.

Example
BindDebugKey("L", "PrintString(\"Entering Lobby...\ ");SetLocation(\"LBY\");");

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:03:02 PM

[ClearConsole]

Prototype
ClearConsole();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Calling this function will erase whatever is on the console’s command line.

Example
ClearConsole();

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 8:41:38 AM

[ClearConsoleBuffer]

Prototype
ClearConsoleBuffer();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Calling this function will clear the console’s scrollback buffer. For a DOS-style command line, alias this to “cls”.

Example
ClearConsoleBuffer();

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:39:39 PM

[ClearDebugFlag]

Prototype
ClearDebugFlag(string flagName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
flagName is the name of the debug flag to clear.

Description
Calling this function will clear the given debug flag (set it to 0).

Example
ClearDebugFlag("ShowStats");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:45:13 PM
Added G-Engine debug flags
1.0.008
8/7/98 11:21:01 AM

[CloseConsole]

Prototype
CloseConsole();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This will close the console if it is open.

Example
CloseConsole();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:04:42 PM

[DumpDebugFlags]

Prototype
DumpDebugFlags();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names and values of all the debug flags in the game. This function is useful if you forgot the name of a debug flag and want to see what is available.

Example
DumpDebugFlags();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:26:25 PM
Added G-Engine debug flags
1.0.008
8/7/98 11:21:01 AM

[DumpFile]

Prototype
DumpFile(string fileName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
fileName is the name of the file to dump.

Description
Dump the given file to the 'dump' stream. This is a good way to check and see if the game is using the data that you think it’s using.
Example
DumpFile("lby110a.sif");
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:03:16 PM

[DumpLockedObjects]

Prototype
DumpLockedObjects();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Do a full dump of all currently locked GObject derivatives to the debugger.
Example
DumpLockedObjects();
History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:06:26 PM

[DumpMemoryUsage]

Prototype
DumpMemoryUsage();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Do a full dump of all currently allocated New'd memory blocks to the debugger. Only useful in GDEBUG mode while debugging.
Example
DumpMemoryUsage();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:00:56 PM

[DumpPathFileMap]

Prototype
DumpPathFileMap();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the contents of the path file map to the “dump'” stream. Note: with an average index size of 15000 filenames, it could take a really really long time to dump this file. It can also overflow the scrollback buffer, which only has a capacity of 1000 lines. Overflowing doesn’t do any harm, but you will only see the bottom 1000 files if you do this. Running the example code will dump the entire path file map to a file named “gk3files.txt” in the same directory as the INI file.

Note: each entry gets dumped along with two numbers in the format (x\y), where x is the number of times the path for this file has been used to load a file, and y is the number of times this particular file has been loaded.

Example
 // prepare the file for the dump
AddStreamOutput ("dump", "file");
SetStreamFilename ("dump", "gk3files.txt");
SetStreamFileTruncate("dump", 1);
 // do the dump
DumpPathFileMap();
 // close the file
RemoveStreamOutput ("dump", "file");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:49:03 PM

[DumpUsedPaths]

Prototype
DumpUsedPaths();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump only the names of the paths that have been used (files have actually been loaded from them) to the “dump” stream. This is useful if you want to copy locally everything that a certain room uses – just go there right after starting the game, do some stuff, then dump all the used paths. See DumpPathFileMap() for info on how to dump to a file.

Example
DumpUsedPaths();

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:54:21 PM

[DumpUsedFiles]

Prototype
DumpUsedFiles();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump only the names of the files that have been used (loaded) to the “dump” stream. This is useful if you want to see exactly what file the system is using – each entry listed shows the full path. See DumpPathFileMap() for info on how to dump to a file.

Example
DumpUsedFiles();

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:54:19 PM

[GetDebugFlag]

Prototype
int GetDebugFlag(string flagName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
flagName is the name of the debug flag to get the value of.

Return Value
Returns an int that will be either a 1 (set) or a 0 (clear) depending on the state of the flag.

Description
Calling this function will return the given debug flag. If SetDebugFlag() had been called on the flag previously, this will return a 1, otherwise it will return a 0. At game startup, all debug flags start out as 0 (off/false).

Example
test$ = GetDebugFlag("TraceCamera");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:28:04 PM
Added G-Engine debug flags
1.0.008
8/7/98 11:21:01 AM

[GetTimeMultiplier]

Prototype
float GetTimeMultiplier();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns the current time multiplier.

Description
Use this function to retrieve the current time multiplier value. A value of 1.0 means “full speed”, whereas 2.0 is “double speed” and 0.5 is “half speed”. See SetTimeMultiplier() for more information.
Example
multiplier$ = GetTimeMultiplier();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:08:21 PM

[InsertConsole]

Prototype
InsertConsole(string command);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
command is the text to insert.

Description
This function will insert the command text at the current cursor location on the console command line. After inserting, the cursor will be placed at the end of the text. If there is an ampersand (“&”) within the text, then it will be erased and the cursor will be set to its position instead. Use this function to create “macros”. For example, after running the Sheep code below, hitting tilde-X will insert the text “GabDin110a” at the current cursor location. This can be used after typing, say, “StartAnimation()” or “StopAnimation()” and can save typing.

Important note: if you use \ (backslash), ' (single quote), or " (double quotes) within the Sheep command (like in the example below) then you need to “escape” it with the backslash (\) key. Otherwise, when the compiler sees the quote it will think it’s the end of the command and give an error.

Example
BindDebugKey("X", "InsertConsole(\"GabDin110a\")");

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 8:43:45 AM

[OpenConsole]

Prototype
OpenConsole();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This will open the console if it is closed.

Example
OpenConsole();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:05:23 PM

[RemoveTemplate]

Prototype
RemoveTemplate(string template);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
template is the name of the template to remove.

Description
This function erases the template that was added via AddTemplate().
Example
RemoveTemplate("cs");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:56:57 PM

[ReportMemoryUsage]

Prototype
ReportMemoryUsage();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Report short stats of current New'd memory usage to the debugger. Only useful in GDEBUG mode while debugging.
Example
ReportMemoryUsage();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:02:28 PM

[ReportSurfaceMemoryUsage]

Prototype
ReportSurfaceMemoryUsage();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Report short stats of current DirectX surface memory usage to the debugger. Only useful in GDEBUG mode while debugging.
Example
ReportSurfaceMemoryUsage();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:02:57 PM

[SetConsole]

Prototype
SetConsole(string command);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
command is the text to set.

Description
See documentation on InsertConsole(). SetConsole() is identical except that it first clears the console command line before doing the insert. Use this function to create keyboard shortcuts. For example, after running the Sheep code below, hitting tilde-X will set the console command line to:

CallDefaultSheep(“”);

The cursor’s position will be set to in between the two double quotes. So this shortcut key combination would be useful for running Sheep – just hit tilde-X then type in the name of the Sheep file, hit return, and it runs.

Example
BindDebugKey("X", "SetConsole(\"CallDefaultSheep(\\\"&\\\")\")");

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:04:37 AM

[SetDebugFlag]

Prototype
SetDebugFlag(string flagName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
flagName is the name of the debug flag to set.

Description
Calling this function will set the given debug flag (set it to 1).

Example
SetDebugFlag(“TraceSheepOpCodes”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:28:58 PM
Added G-Engine debug flags
1.0.008
8/7/98 11:21:01 AM

[SetTimeMultiplier]

Prototype
SetTimeMultiplier(float multiplier);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
multiplier is the current time multiplier value. Values higher than 1.0 are faster than full speed, and values lower than 1.0 are slower than full speed.

Description
This function will adjust the speed of time for the game. This affects any and all time-dependent game features, such as animation speed, the frequency of blinking cursors, etc. It does not affect the playback speed of sounds, but it does affect how long they are perceived to last by the engine. So playing back a dialogue sequence at 3x speed will cause many of the lines to overlap. Use this function to slow down a sequence to make sure it is working correctly, or to speed up an annoying sequence without actually skipping it.

Note that this function does not affect the frame rate in any way other than CPU time usage would affect it.

Example
SetTimeMultiplier(0.4);
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:12:42 PM

[ToggleConsole]

Prototype
ToggleConsole();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Toggle the open/close state of the console.

Example
ToggleConsole();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:05:49 PM

[ToggleDebugFlag]

Prototype
ToggleDebugFlag(string flagName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
flagName is the name of the debug flag to toggle.

Description
Calling this function will toggle the given debug flag (set it to 1 if it’s 0 and vice versa).

Example
SetDebugFlag(“TraceSheepOpCodes”);

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:11:45 PM
Added G-Engine debug flags
1.0.008
8/7/98 11:21:01 AM

[Unalias]

Prototype
Unalias(string alias);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
alias is the name of the alias to remove.

Description
This function erases the alias that was added via AddAlias().
Example
RemoveTemplate("cls");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 3:57:53 PM

[UnbindDebugKey]

Prototype
UnbindDebugKey(string keyName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
keyName is the name of the debug key.

Description
Calling this function will clear any binding on the given debug key. For more information, see BindDebugKey().

Example
UnbindDebugKey(“enter”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:11:04 PM

Engine

These functions work with the game and Sheep engines.

Call [*]

Prototype
Call(string functionName);

Behavior
WAIT

Parameters
functionName is the name of the function to run from the current Sheep file.

Description
This calls a function within the currently executing Sheep file. This is just a more convenient way of executing CallSheep() – you don’t need to type in the name of the Sheep file.

Example
wait Call(“func2$”);

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:08:19 AM

CallDefaultSheep [*]

Prototype
CallDefaultSheep(string sheepFileName);

Behavior
WAIT

Parameters
sheepFileName is the name of the .shp file without the extension to execute from.

Description
This calls the first Sheep function in the file. This is the same as CallSheep() except that the function name is not required. This function just finds the first Sheep function in the file and executes it. If there aren’t any functions, well, then you’ll get yourself an error. For more information, see the documentation for CallSheep().

Example
wait CallDefaultSheep(“somesheep”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:31:11 PM

CallGlobal

Prototype
CallGlobal(string functionName);
Behavior
WAIT

Parameters
functionName is the name of the function to run within the Sheep file. Including the trailing ‘$’ for the function name is a good idea (for consistency), but not necessary.

Description
Call a Sheep function within the current Sheep file. Identical to Call() except that it attaches the Sheep to the global layer. See Call() for more info.

Example
wait CallGlobalSheep("sandwich", "eat$");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:05:40 PM

CallGlobalSheep

Prototype
CallGlobalSheep(string sheepFileName, string functionName);
Behavior
WAIT

Parameters
sheepFileName is the name of the .shp file without the extension. The function is executed from here.

functionName is the name of the function to run within the Sheep file. Including the trailing ‘$’ for the function name is a good idea (for consistency), but not necessary.

Description
Call a Sheep function. This function is identical to CallSheep() except that it attaches the Sheep to the global layer. See SetSheepGlobal() for more information.

Example
wait CallGlobalSheep("sandwich", "eat$");

History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:05:34 PM

[CallIndexedSheep]

Prototype
CallIndexedSheep(string sheepFileName,
 int sheepIndex,
 string functionName);

Behavior
DEVELOPMENT ONLY, WAIT

Parameters
sheepFileName is the name of the .shp file without the extension or the appended index. So if you’re running indexed Sheep named “test1.shp”, “test2.shp”, and “test3.shp”, use “test” as the value for this parameter.

sheepIndex is the number that gets appended to the filename.

functionName is the name of the function to run out of the Sheep file. If this value is “” (blank) then it will run the first function in the file.

Description
Call a function from an indexed Sheep file. This is the same as CallSheep() except that the sheepIndex parameter is converted to a string and appended to the sheepFile parameter. This function is useful for demos and that's about it (use CallSheep() instead). For more information, see the documentation for CallSheep().

Example
wait CallIndexedSheep("demo", index$, "start$");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:35:23 PM
Made function development mode only
1.0.006
7/13/98 3:58:45 PM

CallSheep [*]

Prototype
CallSheep(string sheepFileName, string functionName);

Behavior
WAIT

Parameters
sheepFileName is the name of the .shp file without the extension. The function is executed from here.

functionName is the name of the function to run within the Sheep file. Including the trailing ‘$’ for the function name is a good idea (for consistency), but not necessary.

Description
Call a Sheep function. Waiting on CallSheep() will pause the current script until the Sheep function functionName completes. Note that the Sheep function functionName can also call CallSheep(), and wait on the result as well. Also note that multiple Sheep may be started and waited on simultaneously.

Example
wait CallSheep("machine", "reboot$");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:49:04 PM

[DisableIncrementalRendering]

Prototype
DisableIncrementalRendering();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Completely disable incremental rendering (regardless of camera motion). Call this if you’ve got driver problems. The way to tell that something wrong is…Gabe disappears or “fuzzies” in and out.

Example
DisableIncrementalRendering();

History
Comment
Release
Timestamp

Created
1.0.002
6/12/98 11:20:52 AM
Made function development mode only
1.0.006
7/13/98 3:59:09 PM

[DisableCinematics]

Prototype
DisableCinematics();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Disable cinematic cameras. This will prevent script-based camera activity.

Example
DisableCinematics();

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:09:44 PM

[DisableCurrentSheepCaching]

Prototype
DisableCurrentSheepCaching();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This function disables caching of the currently executing Sheep. When the currently running function exits, and there are no more Sheep functions executing within the same file, the Sheep is marked for deletion. Future calls into the Sheep will force a reload (and recompile) of the file. This function is meant for development mode where you can alt-tab away from the game, change your Sheep file, then alt-tab back and try it out (over and over).

Note: to disable Sheep caching globally, try DisableSheepCaching().

Example
DisableCurrentSheepCaching();

History
Comment
Release
Timestamp

Created
1.0.002
6/10/98 3:28:15 PM

[DisableSheepCaching]

Prototype
DisableSheepCaching();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This disables “Sheep caching” globally. All currently loaded Sheep and all future Sheep will not be cached. For more information on what Sheep caching is, see DisableCurrentSheepCaching().

Example
DisableSheepCaching();

History
Comment
Release
Timestamp

Created
1.0.002
6/10/98 3:31:12 PM

[DumpActiveSheepObjects]

Prototype
DumpActiveSheepObjects();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump all currently active Sheep objects. Any .shp file (or temporarily created one) that is in memory and in use will be listed here. If you’re seeing "caching problems”, check to see if your Sheep is listed here.

Example
DumpActiveSheepObjects();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:14:03 PM

[DumpActiveSheepThreads]

Prototype
DumpActiveSheepThreads();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump all currently active Sheep threads. Any running Sheep function that is in memory and in use will be listed here. If you’re seeing "hanging problems”, check to see if your Sheep is listed here.

Example
DumpActiveSheepThreads();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:14:41 PM

[DumpCommands]

Prototype
DumpCommands();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This dumps the prototype for every available Sheep function. For more information on individual commands, use HelpCommand(). But why bother…you’ve got this exciting manual in front of you…

Example
DumpCommands();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:50:34 PM

[DumpRawSheep]

Prototype
DumpRawSheep(string sheepName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
sheepName is the name of the Sheep to dump without the .’shp’ extension.

Description
This does a “raw” dump of the Sheep, assuming it compiles. Includes a full dump of all the sections in the object code and a disassembly of the bytecode.

Example
DumpRawSheep("carrots");

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:21:08 PM

[DumpSheepEngine]

Prototype
DumpSheepEngine();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This dumps the current state of the Sheep engine.

Example
DumpSheepEngine();

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:09:31 AM

[EnableCinematics]

Prototype
EnableCinematics();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Enable cinematic cameras. This will allow script-based camera activity.

Example
EnableCinematics();

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:10:21 PM

[EnableIncrementalRendering]

Prototype
EnableIncrementalRendering();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Enable incremental rendering when the camera is not in motion. Call this if you’re running in software mode or a Rendition.

Example
EnableIncrementalRendering();

History
Comment
Release
Timestamp

Created
1.0.002
6/12/98 11:23:33 AM
Made function development mode only
1.0.006
7/13/98 4:01:23 PM

[EnableSheepCaching]

Prototype
EnableSheepCaching();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This enables “Sheep caching” globally. All currently loaded Sheep and all future Sheep will be cached. For more information on what Sheep caching is, see DisableCurrentSheepCaching().

Example
EnableSheepCaching();

History
Comment
Release
Timestamp

Created
1.0.002
6/10/98 3:31:06 PM

[ExecCommand]

Prototype
ExecCommand(string sheepCommand);

Behavior
DEVELOPMENT ONLY, WAIT

Parameters
sheepCommand is the command to execute. See the description.

Description
Execute a Sheep command directly as a string. The sheepCommand parameter can be either a series of Sheep statements, a single Sheep statement, or nothing at all. If the statements are in fact a full-fledged Sheep function with symbols{} and/or code{} sections, prepend the command with a pound (#) symbol.

Generally try to avoid using this function - put the code into a .shp file and use the CallSheep() function instead. So then why does this function even exist? It’s used by the console to run commands and the action manager to run NVC responses.

Example
wait ExecCommand(“PrintString(\”Quitting!\”);QuitGame()”);

or

ExecCommand(“#symbols{int a$=2;}code{f$(){PrintInt(a$);}}”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 7:53:46 PM
Made function development mode only
1.0.006
7/13/98 4:01:57 PM

[FindCommand]

Prototype
FindCommand(string commandGuess);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
commandGuess is the pattern to find.

Description
Dumps all the Sheep commands that contain the text in commandGuess. Useful when you can't remember what the hell that stupid command was called. In the example below, the Sheep engine will dump every command containing the text “scene” to the console.

Example
FindCommand("scene");

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:04:04 PM

GetCurrentSheepFunction

Prototype
string GetCurrentSheepFunction();

Behavior
IMMEDIATE

Return Value
Returns the name of the currently executing Sheep function.

Description
Call this if you want a function to be able to know what its name is (this isn’t as stupid as it sounds).

Example
name$ = GetCurrentSheepFunction();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 10:01:26 PM

GetCurrentSheepName

Prototype
string GetCurrentSheepName();

Behavior
IMMEDIATE

Return Value
Returns the name of Sheep containing the currently executing function.

Description
Call this if you want to be able to know the name of the Sheep file that the current function is running out of. This is very useful if you want to make a generic function that can call other functions within the same file. Note that the returned string does not have the “.shp” extension.

Example
name$ = GetCurrentSheepName();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 10:03:56 PM

[GetGamma]

Prototype
float GetGamma();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Return Value
Returns the current gamma level.

Description
Returns the current gamma level. See SetGamma() for more information.
Example
gamma$ = GetGamma();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:47:57 PM

[HelpCommand]

Prototype
HelpCommand(string commandName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
commandName is the command to get help on. Just use the name, no parentheses needed.

Description
This function will get help on a particular command.

Example
HelpCommand(“ShowCameraAngle”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:00:45 PM

[NukeAllSheep]

Prototype
NukeAllSheep();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Nukes and unloads all currently Sheep. Flushes the engine. Same as calling NukeSheep() on every currently loaded Sheep file.

Example
NukeAllSheep();

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:10:21 AM

[NukeSheep]

Prototype
NukeSheep(string sheepName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
sheepName is the name of the Sheep file to nuke without the “.shp” extension.

Description
Nukes and unloads the given Sheep file. Any currently running functions are aborted. The NukeSheep() function may be necessary when a Sheep hangs. And while a Sheep is executing, any changes to the .shp file will not show up when the Sheep is run again. You can fix this by nuking the Sheep.

Important note: nuking a Sheep will not nuke anything that the Sheep is currently doing, such as playing a sound or animation. It will simply kill the Sheep and unload it.

Example
NukeSheep(“autoexec”);

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:11:40 AM

[SaveSprite]

Prototype
SaveSprite(string spriteName, string fileName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
spriteName is the name of the sprite to save.

fileName is the name of the output file to save the sprite in.

Description
This function will take a sprite from within the game and save it out to disk somewhere. If no path info is included in fileName then it goes to the working directory instead.
Example
SaveSprite("title", "c:\\temp\\file.bmp");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:50:03 PM

[SaveTexture]

Prototype
SaveTexture(string textureName, string fileName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
textureName is the name of the texture to save.

fileName is the name of the output file to save the texture in.

Description
This function will take a texture’s lowest mip level (highest detail) from within the game and save it out to disk somewhere. If no path info is included in fileName then it goes to the working directory instead.
Example
SaveSprite("gab!face", "c:\\temp\\face.bmp");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:51:03 PM

[SaveTextureX]

Prototype
SaveTexture(string textureName, int surfaceIndex, string fileName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
textureName is the name of the texture to save.

surfaceIndex is the surface element to save from within the texture. Use -1 to save them all in sequentially numbered format.

fileName is the name of the output file to save the texture in.

Description
Saves the GEngine texture to the given filename. If no path info is included in 'fileName' then it goes to the working directory.
Example
SaveTexture("carpet", 2, "c:\\temp\\carpet.bmp");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:53:07 PM

[SetGamma]

Prototype
SetGamma(float gamma);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
gamma is the gamma level for the scene. Must be a value from 0.0 to 10.0.

Description
This function will change the gamma control for the scene.
Example
SetGamma(2.4);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:55:11 PM

SetGlobalSheep

Prototype
SetGlobalSheep();
Behavior
IMMEDIATE

Description
Sets the currently executing Sheep to be attached to the global layer. This Sheep will always be active even when bringing up new layers or switching stages.
Example
SetGlobalSheep();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 3:51:25 PM

[SetRenderFlat]

Prototype
SetRenderFlat();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Set 3D viewport to render without light maps or model shading. May have to exit the room and come back in order for this to “take”. Note that ReEnter() won’t work for that, gotta actually pull out and go back in.

Example
SetRenderFlat();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:23:05 PM
Made function development mode only
1.0.006
7/13/98 4:05:39 PM

[SetRenderFull]

Prototype
SetRenderFull();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Set 3D viewport to use maximum available rendering quality (light maps are used if the hardware supports it). May have to exit the room and come back in order for this to “take”. Note that ReEnter() won’t work for that, gotta actually pull out and go back in.

Example
SetRenderFull();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:23:48 PM
Made function development mode only
1.0.006
7/13/98 4:06:02 PM

[SetRenderShaded]

Prototype
SetRenderShaded();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Set 3D viewport to render with model shading but without light maps. May have to exit the room and come back in order for this to “take”. Note that ReEnter() won’t work for that, gotta actually pull out and go back in.

Example
SetRenderShaded();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:24:38 PM
Made function development mode only
1.0.006
7/13/98 4:06:12 PM

[SetRenderWireframe]

Prototype
SetRenderWireframe();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Set 3D viewport to render in wireframe only. May have to exit the room and come back in order for this to “take”. Note that ReEnter() won’t work for that, gotta actually pull out and go back in.

Example
SetRenderWireframe();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:25:04 PM
Made function development mode only
1.0.006
7/13/98 4:06:51 PM

[SetShadowTypeBlobby]

Prototype
SetShadowTypeBlobby();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Switches to “blobby” shadows. These are fast to draw but don’t look as good as model (true) shadows. They just paint a warped texture (generally 'shadow.bmp') on the floor.

Example
SetShadowTypeBlobby();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:15:14 PM
Made function development mode only
1.0.006
7/13/98 4:07:19 PM

[SetShadowTypeModel]

Prototype
SetShadowTypeModel();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Switches to “model” shadows. These look the best but are the slowest to draw (generally not a problem). Based on the model’s true shadow.

Example
SetShadowTypeModel();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:15:19 PM
Made function development mode only
1.0.006
7/13/98 4:07:36 PM

[SetShadowTypeNone]

Prototype
SetShadowTypeNone();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Turns off shadows for models.

Example
SetShadowTypeNone();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:16:34 PM
Made function development mode only
1.0.006
7/13/98 4:07:52 PM

[SetSurfaceHigh]

Prototype
SetSurfaceHigh();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Sets software surface quality to high.
Example
SetSurfaceHigh();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:14:08 PM

[SetSurfaceLow]

Prototype
SetSurfaceLow();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Sets software surface quality to low.
Example
SetSurfaceLow();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:14:28 PM

[SetSurfaceNormal]

Prototype
SetSurfaceNormal();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Sets software surface quality to normal.
Example
SetSurfaceNormal();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:14:54 PM

SetTimerMs [*]

Prototype
SetTimerMs(int milliseconds);

Behavior
WAIT

Parameters
milliseconds is the length of time in milliseconds the timer should run before it expires.

Description
This function will create a timer that will run for the given amount of milliseconds before it expires. Waiting on this function will cause the current Sheep function to pause until the timer expires. Note that it will not freeze the game, only the current Sheep. Note that if you don’t wait on this function it will give an error – why bother to run it if you aren’t going to wait for it to finish?

Example
wait SetTimerMs(500);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:04:33 PM

SetTimerSeconds [*]

Prototype
SetTimerSeconds(float seconds);

Behavior
WAIT

Parameters
seconds is the number of seconds to set the timer for.

Description
This function is the same as SetTimerMs() except it takes seconds instead of milliseconds. Note that seconds is a float so it can be a fractional value.

Example
wait SetTimerSeconds(0.25);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:07:17 PM

SetTopSheep

Prototype
SetTopSheep();
Behavior
IMMEDIATE

Description
Sets the currently executing Sheep to be attached to the topmost layer. This Sheep will be active so long as the layer is active. Useful for undoing a SetGlobalSheep() command.
Example
SetTopSheep();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 3:52:15 PM

[ThrowException]

Prototype
ThrowException();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This will throw a generic C++ exception. For testing only…probably don’t want to run this function.

Example
ThrowException();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:09:27 PM

[UnloadAll]

Prototype
UnloadAll();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload everything. Dumps its cache. Any and all resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAll();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:16:57 PM

[UnloadAllAnimations]

Prototype
UnloadAllAnimations();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all animations. Dumps its cache. Any and all animation (.anm) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllAnimations();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:17:31 PM

[UnloadAllModels]

Prototype
UnloadAllModels();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all models. Dumps its cache. Any and all model (.mod) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllModels();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:18:10 PM

[UnloadAllMovies]

Prototype
UnloadAllMovies();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all movies. Dumps its cache. Any and all movie (.avi) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllMovies();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:18:33 PM

[UnloadAllScenes]

Prototype
UnloadAllScenes();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all scenes. Dumps its cache. Any and all scene (.bmp, .mul, .scn) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllScenes();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:19:35 PM

[UnloadAllSounds]

Prototype
UnloadAllSounds();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all sounds. Dumps its cache. Any and all sound (.wav) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllSounds();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:20:10 PM

[UnloadAllSprites]

Prototype
UnloadAllSprites();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all sprite bitmaps. Dumps its cache. Any and all bitmap (non-texture .bmp) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllSprites();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:20:30 PM

[UnloadAllTextures]

Prototype
UnloadAllTextures();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Force the GEngine to unload all 3D texture bitmaps. Dumps its cache. Any and all bitmap (texture .bmp) resources required by the GEngine will be reloaded and reprocessed. Call this function when wanting to use a new resource from the network without having to reload the game.

Note that the GEngine does not actually remove the objects from memory – it just deletes their data. The next time the object is used it will be automatically reloaded (so there is no need to reenter the scene to see the new resource’s effect).
Example
UnloadAllTextures();
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:23:34 PM

[UnloadAnimation]

Prototype
UnloadAnimation(string animName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
animName is the name of the animation (.anm) to unload.

Description
Force the GEngine to unload this animation. Don't include an extension or path in the name. See UnloadAllAnimations() for more information.
Example
UnloadAnimation("gabyawn");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:24:18 PM

[UnloadModel]

Prototype
UnloadModel(string modelName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
modelName is the name of the model (.mod) to unload.

Description
Force the GEngine to unload this model. Don't include an extension or path in the name. See UnloadAllModels() for more information.
Example
UnloadModel("lamp");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:26:18 PM

[UnloadMovie]

Prototype
UnloadMovie(string movieName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
movieName is the name of the movie (.avi) to unload.

Description
Force the GEngine to unload this movie. Don't include an extension or path in the name. See UnloadAllMovies() for more information.
Example
UnloadMovie("intro");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:29:48 PM

[UnloadScene]

Prototype
UnloadScene(string sceneName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
sceneName is the name of the scene to unload.

Description
Force the GEngine to unload this scene and all of its related objects (textures etc). See UnloadAllScenes() for more information.
Example
UnloadScene("lby");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:30:24 PM

[UnloadSound]

Prototype
UnloadSound(string soundName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
soundName is the name of the sound (.wav) to unload.

Description
Force the GEngine to unload this wave file. See UnloadAllSounds() for more information.
Example
UnloadSound("fork");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:31:53 PM

[UnloadSprite]

Prototype
UnloadSprite(string spriteName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
spriteName is the name of the non-texture sprite bitmap (.bmp) to unload.

Description
Force the GEngine to unload this bitmap file. See UnloadAllSprites() for more information.
Example
UnloadSprite("title");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:36:39 PM

[UnloadTexture]

Prototype
UnloadTexture(string textureName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
textureName is the name of the 3D texture bitmap (.bmp) to unload.

Description
Force the GEngine to unload this bitmap file. See UnloadAllTextures() for more information.
Example
UnloadTexture("wood1");
History
Comment
Release
Timestamp

Created
1.0.009
8/21/98 4:37:59 PM

Game Logic

These functions can query and change various parts of the game logic.

Note: the data in this section are part of the logic of the game and are used to track the state of the player. They are stored on disk when the game is saved and restored when the game is reloaded.

[AddCaseLogic]

Prototype
AddCaseLogic(string case, string logic);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
case is the name of the case.

logic is the Sheep code to use for the logic. Must be evaluation code (something that can go in an “if”). Note that n$, v$, and c$ are predefined internal variables that can be used within the logic code. Don’t forget to “escape” any special characters like quotes with a backslash.

Description
Add new logic for the given case. If the case is already added this new code will not get called. Note that if the logic has already been committed, then calling this function will force a reset with a warning. This function is generally for development mode only. If new case logic needs to be used, put it in the NVC file.

Example
AddCaseLogic("SEEN_MOSELY", "!GetFlag(\"SeenMosely\")");

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:30:33 PM
Made function development mode only
1.0.006
7/13/98 4:10:45 PM

[CheckCase]

Prototype
int CheckCase(string noun, string verb, string case);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb.

case is the name of the case.

Return Value
Returns an int that will be either a 1 (case is true) or a 0 (case is false).

Description
This function will evaluate the given case based on the current hard coded and custom Sheep case logic.

Example
CheckCase("LAMP", "LICK", "ALL");

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:33:11 PM
Made function development mode only
1.0.006
7/13/98 4:11:09 PM

ClearFlag [*]

Prototype
ClearFlag(string flagName);

Behavior
IMMEDIATE

Parameters
flagName is the name of the game flag to clear.

Description
Calling this function will clear the given game flag (set it to 0).

Example
ClearFlag("R25DoorLocked");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:09:36 PM

[CommitCaseLogic]

Prototype
CommitCaseLogic();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Commit the current set of case evaluation logic added via AddCaseLogic().This must be called before new logic can be used.

Example
CommitCaseLogic();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:34:03 PM
Made function development mode only
1.0.006
7/13/98 4:11:40 PM

[DumpCaseCode]

Prototype
DumpCaseCode();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the generated Sheep code for the currently active case evaluation logic.

Example
DumpCaseCode();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:34:38 PM
Made function development mode only
1.0.006
7/13/98 4:11:53 PM

[DumpFlags]

Prototype
DumpFlags();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names and values of all the flags in the game. This can be useful for tracking the state of the game logic during testing of NVC responses. It can also be useful if you forget the name of a flag – this function lists them all.

Example
DumpFlags();

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:10:53 PM

[DumpNouns]

Prototype
DumpNouns();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names of all the active nouns for the current stage. This includes all SIF file data currently loaded.

Example
DumpNouns();

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:26:33 AM
Report is now sorted by name
1.0.006
7/1/98 5:40:45 PM

GetChatCount [*]

Prototype
GetChatCount(string noun);
Behavior
IMMEDIATE

Parameters
noun is the name of the noun to get the current chat value for.

Return Value
Returns the current chat value for the given noun for this timeblock.

Description
Use this to get the number of times you have chatted with this noun within this timeblock. Remember that GK3 resets this value every timeblock change.
Example
count$ = GetChatCount("Emilio");
History
Comment
Release
Timestamp

Created
1.0.007
7/27/98 5:22:58 PM

GetChatCountInt

Prototype
GetChatCountInt(string nounEnum);
Behavior
IMMEDIATE

Parameters
nounEnum is the integer value of the noun to use. This integer is internal to the system and can be accessed from within case evaluation Sheep code as n$.

Return Value
Returns the current chat value for the given noun for this timeblock.

Description
Use this to get the number of times you have chatted with this noun within this timeblock. Remember that GK3 resets this value every timeblock change. This function is generally going to be used exclusively in NVC logic. If used from within NVC logic, the n$ parameter should be used.

Example
count$ = GetChatCount(n$);
History
Comment
Release
Timestamp

Created
1.0.007
7/27/98 5:29:34 PM

GetFlag [*]

Prototype
int GetFlag(string flagName);

Behavior
IMMEDIATE

Parameters
flagName is the name of the game flag to get the value of.

Return Value
Returns an int that will be either a 1 (set) or a 0 (clear) depending on the state of the flag.

Description
Calling this function will return the given game flag. If SetFlag() had been called on the flag previously, this will return a 1, otherwise it will return a 0. When a new player starts the game, all flags are automatically cleared to 0.

Example
value$ = GetFlag("BuchelliInChurch");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:20:34 PM

GetFlagInt

Prototype
int GetFlagInt(int flagEnum);

Behavior
IMMEDIATE

Parameters
flagEnum is the integer value of the game flag to get the value of. This integer is internal to the system.

Return Value
Returns an int that will be either a 1 (set) or a 0 (clear) depending on the state of the flag.

Description
Calling this function will return the given game flag. If SetFlag() had been called on the flag previously, this will return a 1, otherwise it will return a 0. When a new player starts the game, all flags are automatically cleared to 0. This function should generally only be used in special cases where performance is an issue.

Example
value$ = GetFlagInt(100);

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:35:52 PM

GetGameVariableInt [*]

Prototype
int GetGameVariableInt(string varName);
Behavior
IMMEDIATE

Parameters
varName is the name of the variable.

Return Value
Returns the value of the variable (an integer).

Description
Calling this function will return the given integer game variable. If SetGameVariableInt() had been called on the variable previously, it will return that value, otherwise it will return a 0. When a new player starts the game, all game variables are automatically cleared to 0.
Example
value$ = GetGameVariableInt("GabeEatChickenCount");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:15:54 PM

GetNounVerbCount [*]

Prototype
int GetNounVerbCount(string noun, string verb);
Behavior
IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb.

Return Value
Returns an integer value that is the count for the noun-verb combination.

Description
This function will query the game flag system for the current non-topic count of this NV combination. This function is generally going to be used exclusively in NVC logic. Noun-verb counts default to 0 and must be explicitly set or incremented using SetNounVerbCount() or IncNounVerbCount().

Example
value$ = GetNounVerbCount("LAMP", "LICK");

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:17:25 PM

GetNounVerbCountInt [*]

Prototype
int GetNounVerbCountInt(int nounEnum, int verbEnum);
Behavior
IMMEDIATE

Parameters
nounEnum is the integer value of the noun to use. This integer is internal to the system and can be accessed from within case evaluation Sheep code as n$.

verbEnum is the integer value of the verb to use. This integer is internal to the system and can be accessed from within case evaluation Sheep code as v$.

Return Value
Returns an integer value that is the count for the noun-verb combination.

Description
This function will query the game flag system for the current non-topic count of this NV combination. This function is generally going to be used exclusively in NVC logic. If used from within NVC logic, the n$ and v$ parameters should be used. Noun-verb counts default to 0 and must be explicitly set or incremented using SetNounVerbCount() or IncNounVerbCount().

Example
value$ = GetNounVerbCount(n$, v$);

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:18:52 PM

GetScore [*]

Prototype
int GetScore();
Behavior
IMMEDIATE

Return Value
Returns the player’s current game score.

Description
This will get the current game score. The score is set to zero at game start and is slowly incremented by Sheep code throughout the game. It’s possible that some content may depend on whether or not the user has above (or below) a certain score at a given point, etc.
Example
score$ = GetScore();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:20:27 PM

GetTopicCount [*]

Prototype
int GetTopicCount(string noun, string verb);

Behavior
IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb (must be a topic).

Return Value
Returns an integer value that is the topic count for the noun-verb combination.

Description
This function will query the game flag system for the current topic count of this NV combination. This function is generally going to be used exclusively in NVC logic. The verb must correspond to a topic, otherwise this function will give an error. Topics are automatically incremented by the game system as the player talks about certain things with other people.

Example
value$ = GetTopicCount("MOSELY", "T_MURDER");

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:37:47 PM
Now only works with topics, not just any NV
1.0.006
7/13/98 4:21:42 PM

GetTopicCountInt [*]

Prototype
int GetTopicCountInt(int nounEnum, int verbEnum);

Behavior
IMMEDIATE

Parameters
nounEnum is the integer value of the noun to use. This integer is internal to the system and can be accessed from within case evaluation Sheep code as n$.

verbEnum is the integer value of the verb to use. This integer is internal to the system and can be accessed from within case evaluation Sheep code as v$. This must be a topic.

Return Value
Returns an integer value that is the topic count for the noun-verb combination.

Description
This function will query the game flag system for the current topic count of this NV combination. This function is generally going to be used exclusively in NVC logic. If used from within NVC logic, the n$ and v$ parameters should be used. The verb must correspond to a topic, otherwise this function will give an error. Topics are automatically incremented by the game system as the player talks about certain things with other people.

Example
value$ = GetTopicCount(n$, v$);

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:39:35 PM
Now only works with topics, not just any NV
1.0.006
7/13/98 4:23:19 PM

HasTopicsLeft

Prototype
int HasTopicsLeft(string noun);
Behavior
IMMEDIATE

Parameters
noun is the name of the noun to query.

Return Value
Returns a bool (0 or 1).

Description
Returns whether the passed noun has any topics available.
Example
has$ = HasTopicsLeft("foozleberry");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:56:37 PM

IncGameVariableInt [*]

Prototype
IncGameVariableInt(string varName);
Behavior
IMMEDIATE

Parameters
varName is the name of the integer game variable.

Description
Calling this function will increment the given integer game variable. See GetGameVariableInt() for more information.
Example
IncGameVariableInt("GabeEatChickenCount");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:40:41 PM

IncNounVerbCount [*]

Prototype
IncNounVerbCount(string noun, string verb);

Behavior
IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb (must be a topic).

Description
Increments the current count for this non-topic noun-verb combination. The verb must not correspond to a topic, otherwise this function will give an error. Noun-verb counts default to 0 and must be explicitly set or incremented using either this function or SetNounVerbCount(). See GetNounVerbCount() for more information.

Example
IncNounVerbCount("DOG", "EAT");

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:40:38 PM

IncreaseScore [*]

Prototype
IncreaseScore(int value);
Behavior
IMMEDIATE

Parameters
value is the value to increase the current game score by.

Description
This increases the player’s game score. Call this after they’ve done something important, useful, or interesting.
Example
IncreaseScore(10);
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:42:10 PM

IsCurrentLocation [*]

Prototype
int IsCurrentLocation(string location);
Behavior
IMMEDIATE

Parameters
location is the three-character location code. For a list of them all, try DumpLocations().

Return Value
Returns an int that will be either a 1 (yes) or a 0 (no) depending on whether or not the current location is the same as the variable location.

Description
Call this function to figure out if we are where we think we are.
Example
if (IsCurrentLocation("LBY"))
{
 PrintString("We're in the lobby!\n");
}
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:44:37 PM

IsCurrentTime [*]

Prototype
int IsCurrentTime(string time);
Behavior
IMMEDIATE

Parameters
time is the four-character time code. For a list of them all, try DumpTimes().

Return Value
Returns an int that will be either a 1 (yes) or a 0 (no) depending on whether or not the current timeblock is the same as the variable time.

Description
Call this function to figure out if we are when we think we are.
Example
if (IsCurrentTime("110a"))
{
 PrintString("We're in the first time block!\n");
}
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:46:41 PM

[ResetCaseLogic]

Prototype
ResetCaseLogic();

Behavior
IMMEDIATE

Description
Calling this function will reset the current custom Sheep case evaluation logic.

Example
ResetCaseLogic();

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:42:56 PM
Made function development mode only
1.0.006
7/13/98 4:47:55 PM

[ResetGameData]

Prototype
ResetGameData();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Reset all game data. This includes flags, counts, game variables, and dialogue completion settings. This should do about the same thing as reloading the game without leaving the scene..
Example
ResetGameData();
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:09:07 PM

[SetChatCount]

Prototype
SetChatCount(string noun, int count);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
noun is the name of the noun.

count is the topic count to use. Must be between 0 and 255, inclusive.

Description
Sets the current chat count for this noun combination to the value of count. For debug modes only. Let the game system automatically increment the chat count within dialogues.
Example
SetChatCount("Jean", 1);
History
Comment
Release
Timestamp

Created
1.0.007
7/27/98 5:31:42 PM

SetFlag [*]

Prototype
SetFlag(string flagName);

Behavior
IMMEDIATE

Parameters
flagName is the name of the game flag to set.

Description
Calling this function will set the given game flag (set it to 1).

Example
SetFlag("BeenInTemplePorch");

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 4:23:05 PM

SetGameTimer

Prototype
SetGameTimer(string noun, string verb, int milliseconds);
Behavior
IMMEDIATE

Parameters
noun and verb are a pair that will get fired off as an action when the timer expires. Nothing will happen if the timer expires and no case is valid for the pair.

milliseconds is the duration of the timer.

Description
This function will set up a game timer and tell it to fire off the noun/verb pair when it expires. Game timers persist across save games.

Example
SetGameTimer("TWO_MEN", "LOOK", 10000);

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:09:35 PM

SetGameVariableInt [*]

Prototype
SetGameVariableInt(string varName, int value);
Behavior
IMMEDIATE

Parameters
varName is

value is

Description
Sets an integer game variable to the given value. See GetGameVariableInt() for more info.
Example
SetGameVariableInt("GabeEatChickenCount");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:52:23 PM

SetNounVerbCount [*]

Prototype
SetNounVerbCount(string noun, string verb, int count);
Behavior
IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb (must be a topic).

count is the value to set the count to.

Description
Set the current count for this non-topic noun-verb combination. The verb must not correspond to a topic, otherwise this function will give an error. Noun-verb counts default to 0 and must be explicitly set or incremented using either this function or IncNounVerbCount(). See GetNounVerbCount() for more information.

Example
SetNounVerbCount("DOG", "EAT", 24);

History
Comment
Release
Timestamp

Created
1.0.00?

[SetScore]

Prototype
SetScore(int score);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
score is the new score to use.

Description
This just sets the game score to something else. For testing only.
Example
SetScore(0);
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:58:07 PM

[SetTopicCount]

Prototype
SetTopicCount(string noun, string verb, int count);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb (must be a topic).

count is the topic count to use. Must be between 0 and 255, inclusive.

Description
Sets the current topic count for this noun-verb combination to the value of count. For debug modes only. Let the game system automatically increment the topic count within dialogues.

Example
SetTopicCount("LAMP", "T_MURDER", 2);

History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:42:13 PM
Made function development mode only
1.0.006
7/13/98 4:48:46 PM

[TriggerNounVerb]

Prototype
TriggerNounVerb(string noun, string verb);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
noun is the name of the noun.

verb is the name of the verb.

Description
Trigger a noun-verb combination. Same as if you chose it off the verb chooser – use for testing, simulating, and demos.

Example
TriggerNounVerb("COFFEE_POT", "THROW_IN_TRASH");

History
Comment
Release
Timestamp

Created
1.0.014
2/17/99 5:29:17 PM

WasLastLocation [*]

Prototype
int WasLastLocation(string lastLocation);
Behavior
IMMEDIATE

Parameters
lastLocation is the three-character location code. For a list of them all, try DumpLocations().

Return Value
Returns an int that will be either a 1 (yes) or a 0 (no) depending on whether or not the location that ego was in before this one is the same as the variable lastLocation.

Description
Call this function to figure out if we came from a particular location.
Example
if (WasLastLocation("LBY"))
{
 PrintString("We just came from the lobby!\n");
}
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 4:59:46 PM

WasLastTime [*]

Prototype
int WasLastTime(string lastTime);
Behavior
IMMEDIATE

Parameters
lastTime is the four-character time code. For a list of them all, try DumpTimes().

Return Value
Returns an int that will be either a 1 (yes) or a 0 (no) depending on whether or not the timeblock that ego was in before this one is the same as the variable lastTime.

Description
Call this function to figure out if we came from a particular timeblock.
Example
if (WasLastTime("110a"))
{
 PrintString("We're past the first time block!\n");
}
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:00:13 PM

General

Functions that don’t have any particular category to go in will appear here.

[DrawFilledRect]

Prototype
DrawFilledRect(int left, int top, int right, int bottom,
 int red, int green, int blue);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
left, top, right, and bottom define the boundaries of the rectangle.

Description
This will draw a filled rectangle on the screen. This function is meant for testing purposes only, and shouldn't generally be used.

Example
 // fill screen with gray
DrawFilledRect(0, 0, 640, 480, 128, 128, 128);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:43:34 PM

FollowOnDrivingMap

Prototype
FollowOnDrivingMap(int followState);
Behavior
WAIT

Parameters
followState is a code-specific number that determines where to follow.

Description
This is a very specific function that will be used in a very specific area. Call HelpCommand() on this function to find out what the possible values of followState are and what they do. They will probably change, and the online Sheep help will be kept up to date more than this doc will. Call this function in response to the FOLLOW command.
Example
FollowOnDrivingMap(10);
History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:12:57 PM

GetRandomFloat

Prototype
float GetRandomFloat(float lower, float upper);

Behavior
IMMEDIATE

Parameters
lower is the lower bound, and upper is the upper bound.

Return Value
Returns a random floating point value between the two boundaries, inclusive.

Description
Want a random number?

Example
random$ = GetRandomFloat(5.5, 10);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:45:19 PM

GetRandomInt [*]

Prototype
int GetRandomInt(int lower, int upper);

Behavior
IMMEDIATE

Parameters
lower is the lower bound, and upper is the upper bound.

Return Value
Returns a random integer value between the two boundaries, inclusive.

Description
Want a random number?

Example
random$ = GetRandomInt(5, 10);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:45:57 PM

PlayFullScreenMovie

Prototype
PlayFullScreenMovie(string movieName);
Behavior
WAIT

Parameters
movieName is the name of the movie file to play (without the .avi extension).

Description
This function will bring up the movie layer and play a movie at double size on top of any screen elements.
Example
wait PlayFullScreenMovie("intro");
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:11:56 PM

PlayMovie

Prototype
PlayMovie(string movieName);
Behavior
WAIT

Parameters
movieName is the name of the movie file to play (without the .avi extension).

Description
This function will bring up the movie layer and play a movie at double size, playing nice with any existing screen elements.
Example
wait PlayMovie("intro");
History
Comment
Release
Timestamp

Created
1.0.010
9/3/98 4:12:10 PM

SetPamphletPage

Prototype
SetPamphletPage(int page);
Behavior
IMMEDIATE

Parameters
page is the page number to switch to.

Description
Sets current page of church pamphlet. Very exciting.
Example
SetPamphletPage(1);
History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:15:00 PM

Insets

[DumpInsetNames]

Prototype
DumpInsetNames();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
This function will dump the names of all the currently available insets to the “dump” stream. The insets that are available are listed in the SIF.
Example
DumpInsetNames();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:05:43 PM

HideInset [*]

Prototype
HideInset();
Behavior
IMMEDIATE

Description
Return to the scene from the inset that is currently being shown.
Example
HideInset();
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:10:14 PM

HidePlate [*]

Prototype
HidePlate(string plateName);
Behavior
IMMEDIATE

Parameters
plateName is the name of the inset plate to hide.

Description
Hides the given plate in the current inset. Plates are defined in the inset’s INS file.
Example
HidePlate("Feather");
History
Comment
Release
Timestamp

Created
1.0.008
7/30/98 2:04:42 PM

ShowInset [*]

Prototype
ShowInset(string insetName);
Behavior
IMMEDIATE

Parameters
insetName is the name of the inset to show.

Description
Shows the given inset. Insets are specified in the SIF. Note: you don’t have to call HideInset() before calling ShowInset() – the game takes care of that automatically.
Example
ShowInset("BLA1");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:09:14 PM

ShowPlate [*]

Prototype
ShowPlate(string plateName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
plateName is the name of the inset plate to show.

Description
Shows the given plate in the current inset. Plates are defined in the inset’s INS file.
Example
ShowPlate("Postitnote");
History
Comment
Release
Timestamp

Created
1.0.008
7/30/98 2:05:59 PM

Inventory

CombineInvItems [*]

Prototype
CombineInvItems(string firstItemName,
 string secondItemName,
 string combinedItemName);
Behavior
IMMEDIATE

Parameters
firstItemName is the name of the first item to combine (a noun).

secondItemName is the name of the second item to combine (a noun).

combinedItemName is the name of the resulting inventory item (a noun).

Description
Combines the first two inventory items to make the third. What it does internally is mark the first two as used and the third as 'ego has'. See EgoTakeInvItem() and SetInvItemStatus() for more info.
Example
CombineInvItems("quarter", "vendingmachine", "candybar");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:14:11 PM

DoesEgoHaveInvItem [*]

Prototype
int DoesEgoHaveInvItem(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun).

Return Value
Returns 0 for no, 1 for yes, depending on whether or not current ego has this particular item.

Description
Returns whether or not ego has the inventory item. Inventory items are usually picked up explicitly by ego and set as “mine” via EgoTakeInvItem(). Note that both Gabe and Grace may have the same inventory item.
Example
if (DoesEgoHaveInvItem("PENCIL"))
{
 StartAnimation("SharpenPencil");
}

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:18:52 PM

DoesGabeHaveInvItem [*]

Prototype
int DoesGabeHaveInvItem(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun).

Return Value
Returns 0 for no, 1 for yes, depending on whether or not Gabe has this particular item.

Description
Returns whether or not Gabe has the inventory item. Inventory items are usually picked up explicitly by ego and set as “mine” via EgoTakeInvItem(). This is exactly the same as DoesEgoHaveInvItem() except it only works for Gabe. Note that both Gabe and Grace may have the same inventory item.
Example
if (DoesGabeHaveInvItem("PENCIL"))
{
 StartAnimation("SharpenPencil");
}

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:19:46 PM

DoesGraceHaveInvItem [*]

Prototype
int DoesGraceHaveInvItem(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun).

Return Value
Returns 0 for no, 1 for yes, depending on whether or not Grace has this particular item.

Description
Returns whether or not Grace has the inventory item. Inventory items are usually picked up explicitly by ego and set as “mine” via EgoTakeInvItem(). This is exactly the same as DoesEgoHaveInvItem() except it only works for Grace. Note that both Gabe and Grace may have the same inventory item.
Example
if (DoesGraceHaveInvItem("PENCIL"))
{
 StartAnimation("SharpenPencil");
}

History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:21:01 PM

[DumpEgoActiveInvItem]

Prototype
DumpEgoActiveInvItem();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dumps the name of the inventory item that ego currently has “active”.
Example
DumpEgoActiveInvItem();
History
Comment
Release
Timestamp

Created
1.0.007
7/22/98 9:21:32 AM

EgoTakeInvItem [*]

Prototype
EgoTakeInvItem(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun).

Description
The current ego will “take” the inventory item. This does nothing more than mark the item as being in the current ego's inventory so it shows up in the inventory screen. Hiding and showing of the model must be done separately.
Example
EgoTakeInvItem("PENCIL");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:22:52 PM

HideInventory

Prototype
HideInventory();
Behavior
IMMEDIATE

Description
Hides the inventory screen.
Example
HideInventory();
History
Comment
Release
Timestamp

Created
1.0.007
7/22/98 9:24:16 AM

InventoryInspect [*]

Prototype
InventoryInspect(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun) to inspect. This must have artwork for the closeup.

Description
Go to a close up of the inventory item itemName. Must be in the inventory currently and cannot be in a close-up screen already.
Example
InventoryInspect("PRINCE_JAMES_CARD");
History
Comment
Release
Timestamp

Created
1.0.008
8/7/98 11:15:38 AM

InventoryUninspect

Prototype
InventoryUnInspect();
Behavior
IMMEDIATE

Description
Leave the close up of an inventory item. Does nothing if not in a close up.
Example
InventoryUninspect();
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 4:57:56 PM

SetEgoActiveInvItem

Prototype
SetEgoActiveInvItem(string itemName);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun) to mark ego as having active. This must be an item that ego already has in inventory. For more information, see SetInvItemStatus().

Description
Sets the ego's active inventory item to be itemName. This item will now show up in the verb chooser and the toolbar.
Example
SetEgoActiveInvItem("LAMP");
History
Comment
Release
Timestamp

Created
1.0.007
7/22/98 9:25:55 AM

SetInvItemStatus [*]

Prototype
SetInvItemStatus(string itemName, string status);
Behavior
IMMEDIATE

Parameters
itemName is the name of the inventory item (a noun).

status can be one of the following:

NotPlaced
not in the game yet

Placed

placed within the game, in a scene

GraceHas

Grace has this item

GabeHas

Gabe has this item

BothHave

both Grace and Gabe have this item

Used

this item has been “used up” and is no longer available in the game

Description
Sets the status of the inventory item. This can be used for combining inventory items to solve puzzles, as in the below example, which sharpens a pencil.
Example
SetInvItemStatus("Pencil", "Used");
SetInvItemStatus("Sharpener", "Used");
SetInvItemStatus("SharpenedPencil", "GabeHas");
History
Comment
Release
Timestamp

Created
1.0.006
7/13/98 5:26:15 PM

ShowInventory

Prototype
ShowInventory();
Behavior
IMMEDIATE

Description
Shows the inventory screen.
Example
ShowInventory();
History
Comment
Release
Timestamp

Created
1.0.007
7/22/98 9:24:48 AM

Models

These functions control both “.mod” type models and “scene” models.

ClearModelShadowTexture

Prototype
ClearModelShadowTexture(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to have its shadow texture cleared.

Description
Reset the texture the model will use when drawing shadows to be the default texture (game blobby shadow). Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a ".mod" model.

Example
ClearModelShadowTexture("lamp");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:43:35 PM

ClearPropGas

Prototype
ClearPropGas(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the GAS prop model to have its GAS cleared.

Description
Clear the fidget for a GAS prop. Model must exist in the scene as a GAS prop.

Example
ClearPropGas("fan");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:44:50 PM

DoesModelExist

Prototype
int DoesModelExist(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model that may or may not be in the scene.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the model is in the scene.

Description
Returns whether or not the given model exists in the current scene. Note that this refers to a “.mod” model. For a list of all the current models, try DumpModelNames().

Example
found$ = DoesModelExist(“vibrator”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:28:48 PM
Implemented (renamed too)
1.0.003
6/17/98 12:17:04 PM

DoesSceneModelExist

Prototype
int DoesSceneModelExist(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the scene model that may or may not be in the scene.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the scene model is in the scene.

Description
Returns whether or not the given model exists in the current scene. Note that this refers to a “scene” model (must be defined as such in the SIF). For a list of all the current scene models, try DumpSceneModelNames().

Example
found$ = DoesSceneModelExist(“toilet_seat”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:19:49 PM

[DumpModel]

Prototype
DumpModel(string modelName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
modelName is the name of the model to dump.

Description
Dump the contents of a '.mod' model to the console.

Example
DumpModel("gab");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:15:53 PM

[DumpModelNames]

Prototype
DumpModelNames();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names of all the current ".mod" models.

Example
DumpModelNames();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:21:00 PM
Report is now sorted by name
1.0.006
7/1/98 10:10:04 PM

[DumpSceneModelNames]

Prototype
DumpSceneModelNames();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names of all the current "scene" models (as defined in the SIF).

Example
DumpSceneModelNames();

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:21:18 PM
Report is now sorted by name
1.0.006
7/1/98 10:10:06 PM

HideModel [*]

Prototype
HideModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to be hidden.

Description
Hide the given model in the current scene. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a ".mod" model.

Example
HideModel(“lamp”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:26:10 PM
Implemented
1.0.003
6/17/98 12:22:06 PM

HideModelGroup [*]

Prototype
HideModelGroup(string groupName);
Behavior
IMMEDIATE

Parameters
groupName is the name of the group (defined in the SIF) to hide.

Description
Hides the given model group in the current scene. See ShowSceneModel() for more information.

Example
HideModelGroup("dumbwaiter");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:01:13 PM

HideSceneModel [*]

Prototype
HideSceneModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the scene model to be hidden.

Description
Hide the given scene model in the current scene. Scene model must exist in the scene (try DoesSceneModelExist() if unsure). Note that this refers to a "scene" model (must be defined as such in the SIF).

Example
HideSceneModel(“ugly_table”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:23:29 PM

IsModelVisible

Prototype
int IsModelVisible(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model that may or may not be visible.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the model is visible.

Description
Use this to figure out if the given model is visible. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a ".mod" model.

Example
visible$ = IsModelVisible(“pentagram”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:30:15 PM
Implemented
1.0.003
6/17/98 12:25:05 PM

IsSceneModelVisible

Prototype
int IsSceneModelVisible(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the scene model that may or may not be visible.

Return Value
Returns a boolean (1 = yes or 0 = no) for whether or not the scene model is visible.

Description
Use this to figure out if the given scene model is visible. Scene model must exist in the scene (try DoesSceneModelExist() if unsure). Note that this refers to a "scene" model (must be defined as such in the SIF).

Example
visible$ = IsSceneModelVisible(“pentagram”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:25:50 PM

SetModelShadowTexture

Prototype
ClearModelShadowTexture(string modelName, string textureName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to have its shadow texture cleared.

textureName is the name of the texture for the model to use as its shadow texture.

Description
Set the texture the model will use when drawing shadows. This will have no effect if models were disabled in the SIF. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a ".mod" model.

Example
SetModelShadowTexture("lamp", "lampshadow");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:08:20 PM

SetPropGas

Prototype
ClearPropGas(string modelName, string gasName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the GAS prop model to have its GAS set.

gasName is the name of the GAS file without the extension.

Description
Change the fidget for a GAS prop. Model must exist in the scene as a GAS prop.

Example
SetPropGas("fan", "fanspin");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 4:54:33 PM

ShowModel [*]

Prototype
ShowModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the model to show.

Description
Shows the given model in the current scene. Model must exist in the scene (try DoesModelExist() if unsure). Note that this refers to a ".mod" model.

Example
ShowModel(“damnedestthing”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:31:35 PM
Implemented
1.0.003
6/17/98 12:26:15 PM

ShowModelGroup [*]

Prototype
ShowModelGroup(string groupName);
Behavior
IMMEDIATE

Parameters
groupName is the name of the group (defined in the SIF) to show.

Description
Shows the given model group in the current scene. The model group must have been defined in a SIF and may include scene models, props, and actors. See the SIF documentation for how to define a group.

Example
ShowModelGroup("dumbwaiter");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:01:39 PM

ShowSceneModel [*]

Prototype
ShowSceneModel(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the scene model to show.

Description
Shows the given scene model in the current scene. Scene model must exist in the scene (try IsSceneModelInScene() if unsure). Note that this refers to a "scene" model (must be defined as such in the SIF).

Example
ShowSceneModel(“damnedestthing”);

History
Comment
Release
Timestamp

Created
1.0.003
6/17/98 12:27:02 PM

StartPropFidget [*]

Prototype
StartPropFidget(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the GAS prop model.

Description
Start the prop fidgeting. This will do nothing if the prop has no current GAS.

Example
StartPropFidget("fan");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:09:34 PM

StopPropFidget [*]

Prototype
StopPropFidget(string modelName);
Behavior
IMMEDIATE

Parameters
modelName is the name of the GAS prop model.

Description
Stop the prop from fidgeting. This will do nothing if the prop is not currently fidgeting.

Example
StopPropFidget("fan");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:10:18 PM

Reports

A “stream” is a channel through which information can get reported. There are several default streams within GK3, most of which are used for error and status reporting. Each stream has certain parameters that can be used to control how and where it outputs data. These functions control those parameters. Note that all of the Sheep functions that “dump” data send it to the “Dump” stream. By default, this stream goes to the console only.

[AddStreamContent]

Prototype
AddStreamContent(string streamName, string content);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

content is the type of content to add to the stream. Possible values are: begin (report headers), content (report content), end (report footers), category (the category of the report), date (the date the report was made), time (the time the report was made), and debug (file/line debug info).

Description
Adds an additional content type to the stream.

Example
AddStreamContent(“Console”, “Debug”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:07:00 PM

[AddStreamOutput]

Prototype
AddStreamOutput(string streamName, string output);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

output is the type of output to add to the stream. Possible values are: file (output to file), dialog (windows dialog message box), debugger (the currently active debugger), memory (to shared memory region for debugging by external app), and console (the console).

Description
Adds an additional output type to the stream.

Example
AddStreamOutput(“Error”, “File”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:09:36 PM

[ClearStreamContent]

Prototype
ClearStreamContent(string streamName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

Description
This clears all content types from the given stream. This command is useful if you want to clear out the setting to get the stream to a known state of content and then add back in the parts you want via AddStreamContent().

Example
ClearStreamContent(“Error”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:11:29 PM

[ClearStreamOutput]

Prototype
ClearStreamOutput(string streamName);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

Description
This clears all output types from the given stream. This command is useful if you want to clear out the setting to get the stream to a known state of output and then add back in the parts you want via AddStreamOutput().

Example
ClearStreamOutput(“Warning”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:12:40 PM

[DisableStream]

Prototype
DisableStream(string streamName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

Description
Disables the stream from further use. Any data sent to it will be ignored.

Example
DisableStream(“SheepScript”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:13:34 PM

[EnableStream]

Prototype
EnableStream(string streamName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

Description
Enables the stream for immediate use.

Example
EnableStream(“SheepEngine”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:14:19 PM

[HideReportGraph]

Prototype
HideReportGraph(string graphType);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
graphType is the name of the report graph to hide.

Description
Hide a report graph of the given type. See ShowReportGraph() for more info.

Example
HideReportGraph("FrameDelay");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:11:29 PM

[RemoveStreamContent]

Prototype
RemoveStreamContent(string streamName, string content);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

content is the type of content to remove from the stream. See AddStreamContent() documentation for possible values of content.

Description
Removes a content type from the stream.

Example
RemoveStreamContent(“Error”, “Begin”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:15:26 PM

[RemoveStreamOutput]

Prototype
RemoveStreamOutput(string streamName, string output);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

output is the type of output to remove from the stream. See AddStreamOutput() documentation for possible values of output.

Description
Removes an output type from the stream

Example
RemoveStreamOutput(“Dump”, “Dialog”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:16:29 PM

[SetStreamAction]

Prototype
SetStreamAction(string streamName, string action);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

action is the action that will be performed when a report is made to this stream. Possible values are: log (simple stream logging), prompt (prompt user to continue), and fatal (throw an exception and die). The default for most streams is log.

Description
This sets the current action for a stream.

Example
SetStreamAction(“Error”, “Prompt”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:17:44 PM

[SetStreamFilename]

Prototype
SetStreamFilename(string streamName, string filename);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

filename is the new filename. The default for this is generally the name of the stream plus “.log”.

Description
Sets the output filename for the given stream. Note that this does not automatically start outputting stream data to the given file - the file output type must be added to the stream via the AddStreamOutput() command if not done already.

Example
SetStreamFilename(“Error”, “errors.log”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:18:36 PM

[SetStreamFileTruncate]

Prototype
SetStreamFileTruncate(string streamName, int truncate);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
streamName is the name of the stream to modify.

truncate is whether or not the file should be truncated when opened. It must be either 0 (do not truncate) or 1 (truncate). This value is 0 by default for all streams.

Description
This sets whether or not the file used on this stream should be truncated when opened. This function is useful to set error streams and such as truncate-on-open so that they don’t get megabytes in size over time.

Example
SetStreamFileTruncate(“Warning”, 1);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:19:58 PM

[ShowReportGraph]

Prototype
ShowReportGraph(string graphType);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
graphType is the name of the report graph to show.

Description
Show a report graph of the given type. More types of report graphs may be added over time, so always use HelpCommand() for the latest list of available types.

Example
ShowReportGraph("FrameDelay");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:15:21 PM

Scene

CallSceneFunction

Prototype
CallSceneFunction(string parameter);
Behavior
WAIT

Parameters
parameter is text that gets sent to the current scene.

Description
This function will send parameter to the current scene, the effects of which (if it does anything) depends on the custom scene code.

Example
CallSceneFunction("ToggleLasers");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:18:06 PM

[DumpLocations]

Prototype
DumpLocations();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the name of every available game location (sometimes called a level or room) along with the three-character identifier to the console. If you forget what’s there, this function can help.

Example
DumpLocations();
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:22:19 PM

[DumpPosition]

Prototype
DumpPosition(string positionName);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
positionName is the name of the position to dump.

Description
Dump the info for the given position from the SIF. Position information includes a position, a heading, and an optional associated camera label. Forget the name of the position? Try DumpPositions().

Example
DumpPosition(“thewetspot”);
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:23:53 PM

[DumpPositions]

Prototype
DumpPositions();
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the names and coordinates of all the available positions in the game. Positions are generally defined in SIFs.

Example
DumpPositions();
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:24:28 PM

[DumpTimes]

Prototype
DumpTimes();

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Description
Dump the name of every available time along with the four-character identifier to the console. You know, stuff like “110a”.

Example
DumpTimes();
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:24:47 PM

[ReEnter]

Prototype
ReEnter();

Behavior
DEVELOPMENT ONLY, WAIT

Description
This will exit and re-enter the current time and location. Scene enter and exit scripts will run.

Example
ReEnter();
History
Comment
Release
Timestamp

Created
1.0.005
6/26/98 2:25:49 PM
Made function development mode only
1.0.006
7/13/98 5:11:43 PM
Function now can be waited on
1.0.008
8/7/98 11:16:44 AM

SetLocation [*]

Prototype
SetLocation(string location);
Behavior
WAIT

Parameters
location is the three-character location code. For a list of them all, try DumpLocations().

Description
This function will immediately switch to a new location – it will read in a new set of SIFs, change stages, change scenes, whatever is necessary. Note that it has two siblings: SetTime() and SetLocationTime(). Please read the documentation on those functions before using this one.

Example
wait SetLocation(“R25”);
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:33:47 PM
Function now can be waited on
1.0.008
8/7/98 11:16:44 AM

SetLocationTime [*]

Prototype
SetLocationTime(string location, string time);

Behavior
WAIT

Parameters
location is the three-character location code. For a list of them all, try DumpLocations().

time is the four-character timeblock code. For a list of them all, try DumpTimes().

Description
This function will immediately switch to a new time and location. See the documentation on the SetLocation() and SetTime() functions (using the HelpCommand() function) for further documentation on the format of the location and time strings.

Important note: if your script is going to change both the time and location, be sure to use SetLocationTime() to do both at once. Do not call SetLocation() and SetTime() separately – you will cause twice the delay and may inadvertently call some startup code that will mess up the current game.

Example
wait SetLocationTime(“R25”, “110a”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:38:18 PM
Function now can be waited on
1.0.008
8/7/98 11:16:44 AM

SetScene

Prototype
SetScene(string sceneName);
Parameters
sceneName is the name of the scene to switch to.

Description
This function will immediately switch to a new scene (.scn file). It will switch in a new set of light maps, ambient map, etc., to handle the scene change. This is generally meant for timeblock-sensitive scene changing that keeps the same BSP.

Example
wait SetScene("lby_noon");
History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:18:22 PM

SetTime [*]

Prototype
SetTime(string time);
Behavior
WAIT

Parameters
time is the four-character time code. For a list of them all, try DumpTimes().

Description
This function will immediately change to a new time – it will read in a new set of SIFs, change stages, change scenes, whatever is necessary. Note that it has two siblings: SetLocation() and SetLocationTime(). Please read the documentation on those functions before using this one.

The time must be in the format 'DTTX' where 'D' is the current day (a number from 1 to 3), 'TT' is a two-digit time (a number from 01 to 12, don't forget the leading '0'), and 'X' is either 'a' or 'p' for a.m. or p.m. Examples: '102p', '310a', or '212p'. For a complete listing of all available times, call the DumpTimes() function.

Example
wait SetTime("110a");
History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 9:39:51 PM
Function now can be waited on
1.0.008
8/7/98 11:16:44 AM

Warp [*]

Prototype
Warp(string locationAndTime);

Behavior
WAIT

Parameters
locationAndTime is the three-character location code and the four-character timeblock code pasted together (or just the location or just the time). For a list of all locations, try DumpLocations(), and for all timeblocks, try DumpTimes().

Description
This is just a shorter simpler version of SetLocationTime() (see its docs for more information). Just attach both strings together when calling this function. Or don't. You can call it as 'Din110a' or '110a' or 'Din' and it will figure out what to do.

Example
wait Warp(“Din110a”);

History
Comment
Release
Timestamp

Created
1.0.004
6/22/98 9:28:33 AM
Function now can be waited on
1.0.008
8/7/98 11:16:44 AM

Sound

Sound comes in four different flavors:

· Global
All sound. Global includes all three of the following.

· Ambient
Musical score and ambient loops.

· Dialogue
Spoken lines of dialogue and voice-overs.

· SFX
Everything else.

[DisableSound]

Prototype
DisableSound(string soundType);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
soundType is one of the values listed at the beginning of this section.

Description
This function will disable (mute) sound of the given type.
Example
DisableSound("dialogue");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 5:02:49 PM

[EnableSound]

Prototype
EnableSound(string soundType);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
soundType is one of the values listed at the beginning of this section.

Description
This function will enable (mute) sound of the given type.
Example
EnableSound("dialogue");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 5:03:24 PM

[GetVolume]

Prototype
int GetVolume(string soundType);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
soundType is one of the values listed at the beginning of this section.

Return Value
Returns a value from 0 to 100 for the given sound type.

Description
This function will get the current volume level for the given sound type.
Example
vol$ = GetVolume("sfx");
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 5:04:51 PM

PlaySound

Prototype
PlaySound(string soundName);

Behavior
WAIT

Parameters
soundName is the name of the sound file to play (without the .wav extension).

Description
This just plays a sound with no 3D placement.

Example
PlaySound("bigexplosion");

History
Comment
Release
Timestamp

Created
1.0.002
6/10/98 10:32:14 AM

PlaySoundTrack [*]

Prototype
PlaySoundTrack(string soundTrackName);

Behavior
WAIT

Parameters
soundTrackName is the name of the sound track file to play (without the .stk extension).

Description
Start the sound track playing.

Example
PlaySoundTrack("theme");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:18:52 PM

[SetVolume]

Prototype
SetVolume(string soundType, int volume);
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
soundType is one of the values listed at the beginning of this section.

volume is a value from 0 (quiet) to 100 (loud).

Description
Sets the volume level for the given type of sound.
Example
SetVolume("global", 80);
History
Comment
Release
Timestamp

Created
1.0.012
12/7/98 5:06:06 PM

StopAllSounds

Prototype
StopAllSounds();

Behavior
IMMEDIATE

Description
This stops all currently playing sounds.

Example
StopAllSounds();

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:20:19 PM

StopAllSoundTracks

Prototype
StopAllSoundTracks();

Behavior
IMMEDIATE

Description
This stops all currently playing sound tracks.

Example
StopAllSoundTracks();

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:19:31 PM

StopSound

Prototype
StopSound(string soundName);

Behavior
IMMEDIATE

Parameters
soundName is the name of the sound file to stop playing (without the .wav extension).

Description
This just stops playing the sound (does nothing if the sound is not already playing).

Example
StopSound("bigexplosion");

History
Comment
Release
Timestamp

Created
1.0.011
11/2/98 4:19:59 PM

StopSoundTrack

Prototype
StopSoundTrack(string soundTrackName);

Behavior
WAIT

Parameters
soundTrackName is the name of the sound track file to stop playing (without the .stk extension).

Description
This stops playing the sound track if it is currently playing.

Example
StopSoundTrack("theme");

History
Comment
Release
Timestamp

Created
1.0.013
2/5/99 5:20:15 PM

Tracing

[PrintFloat]

Prototype
PrintFloat(float value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
value is the value to print.

Description
This function outputs to the “SheepScript” category.

Example
PrintFloat(-20.123);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:49:32 PM

[PrintFloatX]

Prototype
PrintFloatX(string category, float value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
category is the name of the stream to print to.

value is the value to print.

Description
This function outputs the value to the given category.

Example
PrintFloatX(“test”, -20.123);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:52:37 PM

[PrintInt]

Prototype
PrintInt(int value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
value is the value to print.

Description
This function outputs to the “SheepScript” category.

Example
PrintInt(35);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:53:22 PM

[PrintIntX]

Prototype
PrintIntX(string category, int value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
category is the name of the stream to print to.

value is the value to print.

Description
This function outputs the value to the given category.

Example
PrintIntX(“test”, 35);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:54:03 PM

[PrintIntHex]

Prototype
PrintIntHex(int value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
value is the value to print.

Description
This function outputs to the “SheepScript” category in hexadecimal format.

Example
PrintIntHex(35);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:54:49 PM

[PrintIntHexX]

Prototype
PrintIntHexX(string category, int value);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
category is the name of the stream to print to.

value is the value to print.

Description
This function outputs to the given category in hexadecimal format.

Example
PrintIntHexX(“test”, 35);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:56:31 PM

[PrintString]

Prototype
PrintString(string message);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
message is the message to print.

Description
This function outputs to the “SheepScript” category.

Example
PrintString(“Hello world”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:57:24 PM

[PrintStringX]

Prototype
PrintStringX(string category, string message);

Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters
category is the name of the stream to print to.

message is the message to print.

Description
This function outputs to the given category.

Example
PrintStringX(“bla”, “Hello world”);

History
Comment
Release
Timestamp

Created
1.0.001
6/8/98 8:58:48 PM

Prototypes

[*]

Prototype
;
Behavior
DEVELOPMENT ONLY, IMMEDIATE

Parameters

Return Value

Description

Example

History
Comment
Release
Timestamp

Created
1.0.00?

4 IF > 1 "Page i of iv" "" * MERGEFORMAT
Page i of iv

33
Gabriel Knight III: The Sheep Programming Language
Page v of v
Table Of Contents

[image: image2.emf][image: image3.png]{IERRA

