

 Actions, Tests and Flags
 in the
 Adventure Game Interpreter

 ************** ACTIONS **************

return()
 Stop scanning the current logics and return to the calling logics.

[**********] Var actions
Since vars are bytes, addition and subtraction may on occasion produce
surprising results. For example, 128 + 128 = 0 and 128 - 150 = 234
when using vars. Test the values of vars before doing arithmetic when
this sort of situation might arise.

increment(VAR)
 [Written as ++var]
 Increments the var, but not past 255.

decrement(VAR)
 [Written as --var]
 Decrements the var, but not past 0.

assignn(VAR, NUM)
 [Written as var = number]
 Set flag to number.

assignv(VAR, VAR)
 [Written as var1 = var2]
 Set var1 to var2.

addn(VAR, NUM)
 [Written as var += n]
 Add n to var.

addv(VAR, VAR)
 [Written as var1 += var2]
 Add var2 to var1.

subn(VAR, NUM)
 [Written as var -= n]
 Subtract n from var.

subv(VAR, VAR)
 [Written as var1 -= var2]
 Subtract var2 from var1.

lindirectv(VAR, VAR)
 [Written as var1 @= var2]

 Left indirect assignment of vars. Takes the value in var1 and uses it
 as the var number in which to store the value of var2. In essence,
 var1 is a 'pointer' to the var for the assignment. Thus,

 %var var1 39
 %var var2 56
 var1 = 27;
 var2 = 14;
 var1 @= var2;

 would set variable 27 to 14.

lindirectn(VAR, NUM)
 [Written as var @= n]
 As in lindirectv(), but assigns a number to the indirect location.

rindirect(VAR, VAR)
 [Written as var1 =@ var2]
 Right indirect assignment of vars. Takes the value in var2 and uses it
 as the var number from which to get the value to store in var1. In
 this case, var2 is a pointer.

[**********] Flag actions

set(FLAG)
 Set flag to 1.

reset(FLAG)
 Set flag to 0.

toggle(FLAG)
 Toggles the low bit of flag.

set.v(VAR)
 Sets the flag whose number is in the var.

reset.v(VAR)
 Resets the flag whose number is in the var.

toggle.v(VAR)
 Toggles the flag whose number is in the var.

[**********] - Logic actions

new.room(NUM)
 Throws out all loaded modules other than rm.0 and view.0, unanimates

 all objects, sets the horizon to the default, then does a stop.sound(),
 user.control(), and unblock(). After loading the new room's logics
 it positions ego at the appropriate edge of the screen, animates him,
 loads whichever view ego had in the previous room, and sets his view
 to that. It then sets the flag init.log and begins scanning room 0.

new.room.f(VAR)
 As in new.room(), but the room number is taken from the var.

load.logics(NUM)
 Load the logics given by the number.

load.logics.f(VAR)
 Load the logics whose number is in the var.

call(NUM)
 Scan the logics given by the number. If the logics are not currently
 loaded, load them, scan them, then discard the logics. If the logics
 are not currently loaded, they should not load or animate anything,
 since discarding the logics will also release the memory allocated
 by those actions.

call.f(VAR)
 As in call(), but the logic's number is taken from the var.

[**********] Picture actions

load.pic(VAR)
 Load the picture whose number is in the var.

draw.pic(VAR)
 Draw the picture whose number is in the var in the background screen.
 Note that this no longer affects the foreground screen. Call show.pic()
 when you're ready to show the user what you have wrought.

show.pic()
 Bring the current background screen to the foreground.

discard.pic(VAR)
 Release the memory allocated to the picture codes for the picture
 whose number is in var. This will also release all memory allocated
 by loads done after the load.pic(), so be careful.

overlay.pic(VAR)
 Draw the picture whose number is in var over the current picture.
 It is unlikely that any color-fills will work, since fill only works
 on white and the picture being overlayed is probably not all white.
 As in draw.pic(), a call to show.pic() is necessary to bring the

 new picture to the foreground screen.

[**********] View actions

load.view(VIEW)
 Load the view whose number is given by the number.

load.view.f(var)
 Load the view whose number is in the var.

discard.view(VIEW)
 Release the memory used by the view's description. As in discard.pic(),
 be careful since any loads done after the load of the view will also
 be released.

[**********] Animated object actions

animate.obj(OBJECT)
 Animate the given object. This will allocate some memory for saving
 the background of the object when it is drawn and will mark the object
 as ready for drawing/animation. It also does the equivalent of
 start.update(), start.motion(), start.cycling(), normal.cycle(),
 observe.blocks(), observe.horizon(), on.anything(), release.priority(),
 release.loop(), and observe.objects() on the object and sets its
 direction to 0.

unanimate.all()
 Unanimate all animated objects. If you're going to draw a second picture
 in a room (using draw.pic() without doing a new.room()) do this first
 to make sure that you don't end up with a number of animated objects
 which you don't want in the new picture. You'll have to do an
 animate.obj(), draw(), stop.update(), etc. on any object which you
 want in the new picture. The object will have it's same view, loop,
 cel, and position unless you change them (set.view(), etc. won't be
 necessary). Remember that all the things that animate.obj() does
 will be done when you re-animate.

draw(OBJECT)
 Draw the object in the background screen and, if a show.pic() has been
 done since the last draw.pic() or overlay.pic(), put the object in the
 foreground screen as well.

erase(OBJECT)
 Erase the object from the screen. Erased objects do not move or
 interact with drawn objects.

position(OBJECT, NUM, NUM)
 Parameters: object, x coord, y coord.
 Set the position of the object (the lower left corner of its baseline)
 to the (x, y) coords given in the numbers. x is measured from the right
 edge of the screen, y from the top. If part of the object will be off
 the screen, if the object is above the horizon and must observe it, or
 if the object's baseline is on a priority line which it must observe,
 the object is repositioned. Doing a position() of a drawn object will
 leave a clone behind where the objects was. After drawing, use
 reposition().

position.f(OBJECT, VAR, VAR)
 Parameters: object, x coord, y coord.
 As in position(), but the position is taken from vars.

get.posn(OBJECT, VAR, VAR)
 Parameters: object, x position, y position.
 Return the (x, y) position of the object in the variables.

reposition(OBJECT, VAR, VAR)
 Parameters: object, x displacement, y displacement.
 Repositions the object by the delta-x and delta-y in the vars. The high
 bit of the var's byte is the sign bit. Arithmetic operations on vars
 or assignment of a negative number to a var will set the sign bit
 properly. This operation should done on objects after they have been
 drawn. Before drawing use position() or position.f().

[**********] Views of animated objects

set.view(OBJECT, VIEW)
 Set the view of the object to view. If the previous loop or cel number
 of the object is greater than the number of loops or cels in the current
 view, sets the offending loop or cel number to 0. Otherwise, loop and
 cel remain the same.

set.view.f(OBJECT, VAR)
 Set the view of the object to the view number in the var.

set.loop(OBJECT, NUM)
 Set the loop of the object to that in the number. Loop numbers
 and the corresponding direction in which the object's view faces are:
 0 faces right
 1 faces left
 2 faces front
 3 faces back
 Loops are automatically set to that corresponding to an object's
 current direction. A non-moving object (direction = 0) remains in
 its last loop.

set.loop.f(OBJECT, VAR)
 Set the object's loop to that in the var.

fix.loop(OBJECT)
 Fix the object's loop. It will no longer adjust to the direction
 in which the object is moving.

release.loop(OBJECT)
 Undo a fix.loop(). The object will now face in the direction
 appropriate to its direction.

set.cel(OBJECT, NUM)
 Set the object's cel to that in the number. Cels are set automatically
 when the object is cycling. An object which is not cycling remains in
 the last set cel.

set.cel.f(OBJECT, VAR)
 Set the object's cel to that in the var.

last.cel(OBJECT, VAR)
 Return the cel number of the last cel of the current loop of the
 object's current view in var.

current.cel(OBJECT, VAR)
 Return the current cel number of the object in var.

current.loop(OBJECT, VAR)
 Return the current loop number of the object in var.

current.view(OBJECT, VAR)
 Return the current view of the object in var.

number.of.loops(OBJECT, VAR)
 Return the number of loops in the current view of the object in var.

[**********] Priority control of animated objects

set.priority(OBJECT, NUM)
 Set the priority of the object to num. This fixes the priority of
 the object.

set.priority.f(OBJECT, VAR)
 Set the priority of the object to that in the var.

release.priority(OBJECT)

 Free the priority of the object so that it is set automatically
 depending on the object's y position. This is done by animate.obj().

get.priority(OBJECT, VAR)
 Return the current priority of the object in the var.

[**********] Attributes of animated objects

stop.update(OBJECT)
 Stop the object from updating. The object will remain on the screen,
 but will no longer move or cycle. The object's image will not be
 updated during the animation cycle. This should be done when possible
 to reduce the animation load on the interpreter and keep it from
 running too slow.

start.update(OBJECT)
 Start updating a stop.update() object. This is done by animate.obj().

force.update(OBJECT)
 Force an update of a stop.update() object, but don't start.update() it.
 This can be done to force a set.view(), set.loop(), or set.cel() to
 show on the screen without actually starting update on the object.

ignore.horizon(OBJECT)
 Let the object ignore the horizon, so that it can move above or be
 positioned above the horizon.

observe.horizon(OBJECT)
 Force the object to observe the horizon. If this is done on an object
 which is above the horizon, the object will be repositioned below the
 horizon. This is done by animate.obj().

set.horizon(NUM)
 Set the y coordinate of the horizon to the number. The default horizon,
 set by new.room(), is 36.

object.on.water(OBJECT)
 Force the object to remain on water. This requires that the entire
 baseline of the object be on water priority.

object.on.land(OBJECT)
 Force the object to stay off water. This requires that none of the
 baseline of the object be on water priority.

object.on.anything(OBJECT)
 Let the object go anywhere. This undoes object.on.water() and
 object.on.land(). This is done by animate.obj().

ignore.objs(OBJECT)
 Lets the object's baseline pass through the baselines of other objects.

observe.objs(OBJECT)
 Tells the object to stop if it's baseline hits that of another object.
 This is done by animate.obj().

distance(OBJECT, OBJECT, VAR)
 Returns the distance between the centers of the baselines of the
 two objects in var. If one or both of the objects is not drawn,
 this returns max.flag.value (= 255).

[**********] Cycling of animated objects

stop.cycling(OBJECT)
 Stop the automatic cycling through cels for the object.

start.cycling(OBJECT)
 Start the automatic cycling through cels for the object. This is done
 by animate.obj().

normal.cycle(OBJECT)
 Cycle the object from the current cel number to high cel number.
 When the last cel is reached, start again at cel 0. This is done by
 animate.obj().

end.of.loop(OBJECT, FLAG)
 Reset the flag. Increment the cel number at each animation cycle.
 When the last cel of the loop is reached, stop cycling and set the flag.

reverse.cycle(OBJECT)
 Cycle the object from the current cel number to cel 0. When cel 0
 is reached, start again at the last cel of the current loop.

reverse.loop(OBJECT, FLAG)
 Reset the flag. Decrement the cel number at each animation cycle.
 When cel 0 is reached, stop cycling and set the flag.

cycle.time(OBJECT, VAR)
 Set the cycle frequency of the object (the number of animation cycles
 between cycling the object's cels) to the number in the var. Reset
 to 1 by new.room().

[**********] Motion of animated objects

stop.motion(OBJECT)
 Prevent the object from moving, though cycling will continue.

start.motion(OBJECT)
 Allow an object to move. This is done by animate.obj().

step.size(OBJECT, VAR)
 Set the step size of the object (how far it moves in each animation
 cycle) to the number in var. Reset to 1 by new.room().

step.time(OBJECT, VAR)
 Set the step frequency of the object (the number of animation cycles
 betweeen moves of the object) to the number in var. Reset to 1 by
 new.room().

move.obj(OBJECT, NUM, NUM, NUM, FLAG)
 Parameters: object, x coord, y coord, step size, flag.
 Reset the flag, then start moving the object to the given (x, y)
 position. Change the appropriate coordinates by the step size at
 each animation interval. If the step size parameter is zero
 (the normal case), the motion uses the default step size of the object.
 When the object gets within the step size of the destination, stop
 the motion and set the flag.

move.obj.f(OBJECT, VAR, VAR, VAR, FLAG)
 Parameters: object, x coord, y coord, step size, flag.
 Like move.obj(), destination coordinates and step size are passed in
 vars.

follow.ego(OBJECT, NUM, FLAG)
 Parameters: object, distance for collision, flag.
 Reset the flag and start the object following ego with its current
 stepsize. When the distance to the object is less than the greater
 of the object's stepsize and the specified distance for collision,
 stop the object's motion and set the flag.

wander(OBJECT)
 Start the object wandering in random directions for random distances.

normal.motion(OBJECT)
 Undoes a previous follow.ego(), move.obj(), or wander() before it is
 completed.

set.dir(OBJECT, VAR)
 Set the direction of the object to that in the var. Note that this
 will not work for ego -- set the var ego.dir to change ego's direction.

get.dir(OBJECT, VAR)
 Get the current direction of the object in the variable.

[**********] Block actions

ignore.blocks(OBJECT)
 Let an object priority 1 and blocks set by block().

observe.blocks(OBJECT)
 Require the object to observe priority 1 and blocks set by block.
 This is done by animate.obj().

block(NUM, NUM, NUM, NUM)
 Parameters: upper left x, upper left y, lower right x, lower right y.
 Set a block to stop object motion. Only one block at a time may be
 set.
****** How about a number of blocks?

unblock()
 Remove the block set by block().

[**********] Inventory object actions

get(OBJECT)
 Add the object to ego's inventory.

getf(VAR)
 Add the object whose number is in var to ego's inventory. Generally
 used for debugging, not in the game.

drop(OBJECT)
 Remove the object from ego's inventory. The object is now gone forever.

put(OBJECT, VAR)
 Put the number in var into the room number field of the inventory object.

put.f(VAR, VAR)
 Parameters: inventory object, room number.
 Like put(), inventory object and room number are contained in variables.

get.room.f(VAR, VAR)
 Parameters: inventory object, var number.
 Get the room number field of inventory object in the variable.

[**********] Sounds

load.sound(NUM)

 Load the sound.

sound(NUM, FLAG)
 Reset the flag, then play the sound. When the sound is finished, set
 the flag. If sounds are off, the flag is set immediately -- therefore
 don't use this to time anything but the sound.

stop.sound()
 Stop the current sound from playing. Sets the end flag for the sound.

[**********] Message/text display

 Messages are strings of fewer than 255 characters which may contain
 the following special commands:

 \ Take the next character (except '\n' below) literally
 \n Begin a new line
 %wn Include word number n from the parsed line (1 <= n <= 255)
 %sn Include string number n (0 <= n <= 255)
 %mn Include message number n from this room (0 <= n <= 255)
 %gn Include global message number n from room 0 (0 <= n <= 255)
 %vn|m Print the value of var #n. If the optional '|m' is
 present, print in a field of width m with leading zeros.

 Thus,
 %message 1 "This is %m2"
 %message 2 "message 1."
 print(1);
 will print as
 This is message 1.

 If var number 5 is 23,
 %message 1 "The value is: %v5|3."
 will print as
 The value is 023.

 The '\' escape character is interpreted by both the compiler and
 the interpreter, so it is sometimes necessary to do a lot of \\\\ing
 to get things right. The following table should help:

 Char which you Use
 really want

 " \"
 % \\%
 \ \\\\

 All spaces in messages are now significant (multiple spaces used to
 be compressed to one). This will require a change in the way messages
 are entered. Instead of

%message 1 "blah blah blah
 blah blah blah"

 use

%message 1
"blah blah blah
 blah blah blah"

print(MSGNUM)
 Print the message in a pop-up window. See the discussion of message
 formats below.

print.f(VAR)
 Print the message whose number is in the var in a pop-up window.

display(NUM, NUM, MSGNUM)
 Parameters: row, column, message number.
 Print the message at the (row, col) position given by the numbers.

display.f(VAR, VAR, VAR)
 Parameters: row, column, message number.
 Print the message whose number is in the last var at the (row, col)
 position given by the first two vars.

clear.lines(NUM, NUM, NUM)
 Parameters: top row, bottom row, screen attribute.
 Clear the screen rows (inclusive) between the top and bottom rows
 to the given screen attribute. See set.text.attribute() for the
 screen attributes.

text.screen()
 Go to a text screen. On machines with a special hardware text screen
 this will generally give clearer, faster text displays.

graphics()
 Return to the graphics screen after a text.screen() call.

set.cursor.char(MSGNUM)
 Set the cursor character to the first character of the message. At
 startup, there is no cursor.

set.text.attribute(NUM, NUM)

 Parameters: foreground color, background color.
 Set the foreground and background colors for text. Not all combinations
 will necessarily be supported on all machines. We will try to
 approximate where we can, but no guarantees. The colors are:

 0 black
 1 dark blue
 2 dark green
 3 cyan
 4 red
 5 magenta
 6 brown
 7 light grey
 8 dark grey
 9 light blue
 10 light green
 11 light cyan
 12 pink
 13 light magenta
 14 yellow
 15 white

 All combinations will (I believe) be supported on the Atari ST, Amiga,
 and the NEC 9801.

 On the Apple, if the background is anything but black the text will be
 inverse, otherwise it will be normal.

 On the IBM, all colors will be supported in text mode. In graphics mode,
 foreground colors 0-7 will be supported on the PCjr & the EGA, but
 will be mapped into black, cyan, magenta, and white on the PC. If the
 background color is anything but black in graphics mode, the text will
 print in inverse (black on white).

shake.screen(NUM)
 Shake the screen quickly in a set of figure eights. The number is the
 number of figure eights to do. This will be a no-op on some hardware,
 so don't depend on it.

[**********] Screen handling

configure.screen(NUM, NUM, NUM)
 Parameters: picture row, input row, status row.
 This call, which should be done as soon as the game starts, sets
 where the various components of the screen are placed. The first
 number is the CHARACTER row number (starting at zero) for the upper
 left corner of the picture, the second is the row number for the

 input line, and the third is the row number for the status line.

status.line.on()
 Turn the status line on. This displays an inverse line which shows the
 score and the state of the sound toggle.

status.line.off()
 Turns the status line off and clears it to black. The status line is
 off at startup.

[**********] String handling

 There are 10 strings (1 - 10) of up to 19 characters which can be
 used in messages. String # 0 is the prompt.

set.string(NUM, MSGNUM)
 Parameters: string number, message number.
 Copy the message into the string given by the number.

get.string(NUM, MSGNUM, NUM, NUM)
 Parameters: string number, message number, row, column.

 Prints the message as a prompt at the given screen position, then
 allows the user to enter the string for string number NUM. If the
 row is >24, the message will be printed at the current cursor
 position.

 Since string 0 is the prompt, set the prompt by
 %message 1 "> "
 set.string(0, 1);

 The code to let the user set the prompt is
 %message 2 "New prompt: "
 get.string(0, 2);

 If the user presses ESC, nothing will be copied to the string, so it is
 advisable to set a default with set.string() before calling get.string().

word.to.string(NUM, NUM)
 Parameters: word number, string number.
 Copy the word into the string.

parse(NUM)
 Parse the given string as if it were a normal input line from the
 user. 'Have.input' will be set, as will 'unknown.word' if applicable.
 The words will be available to all said() tests for the remainder
 of the current logic scan.

get.num(MSGNUM, VAR)
 Prompt the user with the message and get a (purportedly) numeric reply.
 Put the number into var. If a non-numeric reply is typed, var will
 be 0.

[**********] Input handling

prevent.input()
 Clear the input line and do not accept input from the user. Input
 is off at startup.

accept.input()
 Display the input line and accept input from the user.

set.key(NUM, NUM, NUM)
 Parameters: low byte of keycode, high byte of keycode, controller number.
 Assign a key to a controller. The first number is the low byte
 of the key's keycode, the second is the high byte. The last number
 is the number of the controller which is to be activated by this
 key. The keycodes are given in the IBM Tech Ref. in section 2 under
 "Keyboard Encoding and Useage", and (I think) in the BASIC manual.

 ASCII characters have a zero high byte (second number) and the ASCII
 code in the low byte. Function keys, Alt keys, etc. have the a
 zero low byte (first number) and a high byte which is the extended
 keycode from the manual. Joystick buttons have the following
 keycodes (these are in 'sysdefs'):

 low byte high byte
 single click, button 0 1 1
 single click, button 1 1 2
 double click, button 0 1 3
 double click, button 1 1 4

 The following are the set.key() commands to give the keyboard
 map of Black Cauldron:

 set.key(0, 59, c.sound.toggle) [F1
 set.key(19, 0, c.sound.toggle); [^S
 set.key(0, 60, c.help); [F2
 set.key(0, 61, c.save.game); [F3
 set.key(0, 62, c.useit); [F4
 set.key(0, 63, c.restore.game); [F5
 set.key(0, 64, c.doit); [F6
 set.key(0, 65, c.restart); [F7
 set.key(0, 66, c.lookit); [F8

 set.key(0, 68, c.show.mem); [F10
 set.key(9, 0, c.status); [TAB
 set.key(0, 32, c.debug); [@D
 set.key(10, 0, c.reset.joy); [^J
 set.key(3, 0, c.cancel.line); [^C
 set.key(5, 0, c.echo.line); [^E
 set.key(27, 0, c.pause); [ESC
 set.key(18, 0, c.rgb.toggle); [^R
 set.key(16, 0, c.new.prompt); [^P

 set.key(joy.low.byte, button0, c.doit);
 set.key(joy.low.byte, button1, c.useit);
 set.key(joy.low.byte, button0.dbl, c.lookit);
 set.key(joy.low.byte, button1.dbl, c.status);

 The controller definitions are in 'sysdefs'. You may map up to
 29 keys. More than one key may map to a single controller, but
 a single key can't map to more than one controller.

****** Note that the keycodes used here are machine-dependent. This
****** code should be kept in one module if possible to minimize
****** re-write for new machines.

[**********] Add to picture

add.to.pic(VIEW, NUM, NUM, NUM, NUM, NUM, NUM)
 Parameters: view, loop, cel, x pos, y pos, object priority, box priority.
 Draw the view in the picture without saving its background. If the
 object priority parameter is 0, the object's priority is that of the
 priority band in which it is placed. The object cannot be animated
 and cannot be erased except by drawing something over it. The object
 is added to the picture with a box of 'box priority' which extends from
 its baseline to the bottom of the next lowest priority band.
 If this is 0, it prevents other objects from 'popping' through it.
 Box priorities of 4 and above do not add any box. Add.to.picture()
 ignores all priority lines, object baselines, and block() commands --
 it can go anywhere in the picture.

add.to.picture.f(VAR, VAR, VAR, VAR, VAR, VAR, VAR)
 Parameters: view, loop, cel, x pos, y pos, object priority, box priority.
 Same as above, but from variables.

[**********] User requested actions

status()

 Goes to an inverse text screen and displays the player's score and a
 list of what he is carrying.

save.game()
 Prompt the player for a letter between 'a' and 'z' under which to
 save the current game, then save it.

restore.game()
 Prompt the player for the letter under which a game was saved, then
 restore that game.

init.disk()
 Initialize a disk for saving games on. Special signatures are written
 on the disk for identification so that we don't try to save on a
 player's game disk.

restart.game()
 Restart the game. Room 0 logics, view 0, and words.tok remain in
 memory, everything else is reloaded and flags and variables are reset.
 Strings are not affected. The 'restart.in.progress' flag is set, in
 case you need to know about this event.

[**********] Show object view

show.obj(VIEW)
 Show a special view of an object and print a description of it. Used
 for response to 'look at object'.

[**********] Miscellaneous
random(NUM, NUM, VAR)
 Parameters: minimum value, maximum value, variable.
 Return, in the variable, a random number between the minimum and maximum
 values, inclusive. This uses a linear congruential generator seeded
 from the system time, and so should be fairly good. Tests show that
 the distribution is VERY uniform.

program.control()
 Assume program control of ego, so that ego does not move in the direction
 indicated by the user. This is not normally necessary, as move.obj(ego)
 and wander(ego) do an implicit program.control(). The benefit (if any)
 of this over doing a stop.motion(ego) and a stop.cycling(ego) is that
 the variable ego.dir is not affected by the user's input as it would be
 with the stops.

player.control()
 Return control of ego to the player. This is the only way to terminate

 a wander(ego), and is the way to terminate a move.obj(ego) prematurely.
 In the latter case, the end flag is not set.

obj.status.f(VAR)
 Display the state of an object in a pop-up window. Used for debugging;
 currently displays x position, y position, and priority.

quit()
 Terminate the game. On direct I/O versions of the game, your're
 hung. On DOS versions, returns you to DOS.

show.mem()
 Show the total heap space available, how much is currently being
 used, and the amount of unused stack.

pause()
 Pause the game. Displays a message to the effect that the game
 is paused in a pop-up window. Waits for the user to press ENTER
 or ESC before continuing.

echo.line()
 Echo the previous player input to the input line. The echo starts
 from the current position in the line.

cancel.line()
 Cancel the current input line.

init.joy()
 Prompt the user to center his joystick and recalibrate the joystick
 routines.

toggle.sound()
 Toggle the on/off state of the sound.

toggle.monitor()
 Toggle between the composite 16 color mode and 4 color RGB mode.
 No effect on a PCjr, Tandy 1000, or a PC with an EGA.
****** This is pretty machine-dependent. What to do?

version()
 Display the version message of the interpreter in a pop-up window.
 Used for debugging.

script.size(NUM)
 Sets the script buffer size. Default size is 50 events. Do this
 in the current.room == 0 logics of room.0, before a new.room() is
 done. Maximum script buffer events used is displayed in the
 show.mem() display.

max.drawn(NUM)

 Sets the maximum number of animated objects which can be drawn at
 a time. Default is 15 animated objects. Do this at the same time
 as script.size().

 ************** TESTS **************

equaln(VAR, NUM)
 [Written as var == num]
 True if the var has the value num. A special case is the test
 if (var)
 which is expanded to
 if (var == 0)

equalv(VAR, VAR)
 [Written as var1 = var2]
 True if var1 has the same value as var2.

lessn(VAR, NUM)
 [Written as var < num]
 True if the value of var is less than num.

lessv(VAR, VAR)
 [Written as var1 < var2]
 True if the value of var1 is less than the value of var2.

greatern(VAR, NUM)
 [Written as var > num]
 True if the value of var is greater than num.

greaterv(VAR, NUM)
 [Written as var1 > var2]
 True if the value of var1 is greater than the value of var2.

isset(FLAG)
 [Written as flag]
 True if the flag is set.

isset.v(VAR)
 True if the flag whose number is the value of the var is set.

has(OBJECT)
 True if the object is in ego's inventory.

obj.in.room(OBJECT, VAR)
 True if the object is in the room whose number is in var.

posn(OBJECT, NUM, NUM, NUM, NUM)
 Parameters: object, upper left x, upper left y, lower right x, lower right y
 True if the object is in the rectangle described by the points
 (including the coordinates given).

controller(NUM)
 True if the given controller is set.

have.key()
 True if a key is waiting to be read. Note that if a 'prevent.input()'
 has not been done, the likelyhood of this being true is minimal --
 virtually all input will go to the input line.

said(WORDLIST)
 True if the number of non-ignored words in the input line is the
 same as that in the word list and the non-ignored words in the input
 match, in order, the words in the word list. The special word
 'anyword' (or whatever is defined as word 1 in 'words.txt') in the
 word list matches any non-ignored word in the input.

 ************** VARS **************

current.room
 Contains the current room number.

previous.room
 Contains the number of the previous room.

edge.ego.hit
 If non-zero, indicates that ego hit an edge of the picture. The edge
 hit is given by:
 top 1
 right 2
 bottom 3
 left 4

score
 Contains the player's current score. This is modified by the logics
 and printed on the status line or the status page.

obj.hit.edge
 If non-zero, indicates that an object (other than ego) hit the edge of
 the picture. The value of the var is the number of the object.

edge.obj.hit
 When non-zero, indicates the edge of the screen that the object hit.

ego.dir
 Gives ego's current direction. This is the direction provided by
 user -- a move.obj() will not affect it. The directions and their
 corresponding values are
 stopped 0
 up 1
 up & right 2
 right 3
 down & right 4
 down 5
 down & left 6
 left 7
 up & left 8

max.score
 This is the maximum score attainable in the game. It's only purpose
 is to allow the "You have x points out of a possible y" message
 on the status screen.

memory.left

 The number of pages (512 byte blocks) of memory remaining free in the
 heap.

unknown.word
 This flag is set to the number of any unknown word in the user's
 input, or to zero if all the words were recognized. To handle
 unknown words, use the following code before any said() tests
 in room 0:

 %message 1 "I don't understand \"%1\""
 %message 2 "I don't understand \"%2\""
 %message 3 "I don't understand \"%3\""
 if (have.input && unknown.word) {
 reset(have.input);
 print.f(unknown.word);
 }

animation.interval
 This is the number of timer ticks (1/18.2 secs) between animation
 cycles and logic scans.

elapsed.seconds
elapsed.minutes
elapsed.hours
elapsed.days
 These contain the play time since the user started the game. Restored
 games restore these vars. This is the most accurate time-base for
 any real-time needs. Incrementing or decrementing flags is not accurate
 if animation.interval is 0 or if animation over-runs timer interrupts.

double.click.delay

current.ego
 Contains the view number of ego's current view.

error.number
error.parameter

machine.type

 ************** FLAGS **************

 The following flags are set when:

on.water
 Ego's baseline is entirely on water.

ego.hidden
 No pixels of ego are visible on the screen.

have.input
 The user has pressed RETURN after typing text. Input has been
 parsed for said() tests.

hit.special
 At least one pixel of ego's baseline is on special priority.

have.match
 A said() test has produced a match. No more said() tests will succeed
 unless have.match is reset.

init.log
 All logics should do their initializations.

restart.in.progress
 This is set through the first logic scan following a restart
 of the game. Don't bother putting up banner screen, etc. when
 this is set.

no.script
 Setting this flag will keep the interpreter from adding subsequent
 scriptable actions to the script buffer.

 The script refered to above is a list of the actions which have
 brought the game to the current state. It is used for restoring
 the game. The actions which add to the script are:

 load.logic()
 load.view()
 load.pic()
 load.sound();
 draw.pic();
 overlay.pic();
 add.to.pic(); (this takes 4 script entries)
 discard.pic();
 discard.view();

 and any 'var' forms of the above.

forget.add.to.pic

enable.double.click

sound.on

