

 Object Oriented Programming in Script

 Author: Jeff Stephenson

 Date: 4 April 1988

 SIERRA CONFIDENTIAL

 Table of Contents

Object Oriented Programming . 3

Object Oriented Terminology . 6

Classes . 8

 Defining Classes . 8

 Compiling Classes . 9

Objects . 11

Sending Messages . 12

An Extended Example . 13

 Object Oriented Programming

Object oriented programming (OOP) is a relatively new paradigm in

programming. The Smalltalk language, developed at Xerox PARC, was the

first language to fully use the concept of OOP. Since then, many languages

(such as C++, Scheme, Objective C, and Actor) have incorporated the concepts

to different degrees. Because of the power of OOP for things such as

simulations (and after all, what are adventure games?), Script was designed

with the intention that much of the programming would use this concept.

Those of us using the language over the last several months have found

ourselves moving more and more away from its procedural aspects and toward

the OOP aspects -- rooms, dialogs, menus, everything is now an object of one

sort or another.

OOP languages basically turn the data/procedure relationship in

conventional programming inside out: instead of sending data to a procedure

for the procedure to act upon, we send a message to data (an object) telling

it what to do. This allows the sender of the message to obtain a service

from the receiver object with no knowledge of how this service is performed,

something which is not possible in procedural languages.

As an example, consider displaying the 'value' of data elements in a

program in a procedural language and then an OOP language. In this example,

we'll assume that the procedural language is untyped (as opposed to the

current direction of strong typing in C, Ada, Pascal, etc.). Strong typing

would make the follow exercise even harder. To make the example more

concrete, we'll imagine that we want to be able to display one of two data

element types: a list of strings or an array of integers.

Procedurally, we'll use a C-like language (with lots of extensions which

don't exist in C) and write

 Show(data)

 /* Here's one place C would have a problem -- data could either be

 * a list of strings or an array of integers. What type does one

 * declare?

 */

 {

 switch (typeof(data)) { /* how is typeof() implemented? */

 case stringList:

 for (str = ListStart(data) ;

 str != NULL ;

 str = ListNext(data)

)

 printf(str);

 break;

 case integerArray:

 for (i = 0 ; i < sizeof(data) ; ++i)

 printf("%d", data[i]);

 break;

 }

 }

Note that one could not easily write this in C because of strong data typing

and the difficulty of implementing both typeof() and this particular use of

sizeof(). What usually ends up happening in a procedural language is that

instead of one general-purpose Show() procedure, one writes a lot of

special purpose ShowStringList() and ShowIntegerArray() procedures and

whoever wants to display something has to be aware of the type of data being

displayed and call the appropriate procedure.

Contrast this with object-oriented programming. Either type of data can be

displayed by simply sending the data object the show message:

 (data show:)

Since both Arrays and Lists are sub-types of the Collection type they

implement this in the same way (they actually share the code):

 (method (show)

 (self eachElementDo: #show:)

)

Both the list and the array simple send each of their elements the message

requesting the element to display itself. The elements, strings and

integers, implement the show method in different manners. The show method

for a string might be

 (method (show)

 (Print str)

)

whereas that for the integer might be

 (method (show)

 (Print "%d" number)

)

Note how much simpler the OOP code is than the procedural code. This is

because the responsibility for displaying something is delegated to the

object being displayed, freeing the calling code from knowing anything

about it. In fact, because of this passing on of responsibility, the above

code will also handle lists which contain elements of several data types --

(data show:) would also work if data were a list which contained a string,

an integer, a list of integers, an array of strings, and a list of arrays of

lists of strings. No change in code is necessary.

Another benefit of the OOP code is that adding a new data type is as easy as

writing the show method for the data type. In the procedural code, the

Show() procedure would need re-writing, as would the typeof() and sizeof()

procedures -- the addition of the new type propagates throughout the code

rather than remaining isolated in the new type.

Rather than continuing to give examples in an unspecified language, we will

first define the terms to be used in discussions of OOP languages and then

give the syntax and commands which Script uses. Following that will be more

examples of the use of OOP in adventure game coding.

Object Oriented Terminology

Property:

 Properties are data associated with an object. A door object might

 have such properties as the room number into which it opens, its state

 (open or closed), and its position on the screen.

Method:

 A method is a procedure which is internal to an object or class. A

 door object might have a method open which causes the door to change

 state from closed to open.

Message:

 Methods of an object are invoked by sending the object messages. In

 Script a message is sent to an object by enclosing the object name,

 then the message, in parenthesis (much like a procedure call):

 (doorToCloset open:)

 sends the open: message to the object doorToCloset.

Selector:

 Selectors are used in messages to indicate the method which is to be

 invoked. The symbol open: in the above example of messaging is the

 selector for the open method.

Object:

 An object is a collection of properties and methods bundled together,

 and should be considered to be a distinct entity (hence the use of the

 word 'object').

Class:

 A class is a 'generic' object of a certain type. It has no real

 existence of its own, but provides the default methods and property

 values to those objects which are instances (see below) of it. Classes

 may have sub-classes, which are more specific types of a class (for

 example, the class SlidingDoor is a sub-class of the class Door) and

 super-classes, which are generalizations of the class (the class

 Opening might be a super-class of the class Door).

Instance:

 An instance of a class is a 'concrete' object which has the properties

 and methods of the class, but whose properties are distinctly its own.

 For example the object doorToCloset is an instance of the class Door

 which is different from the object doorToPatio, another instance of

 class Door. Changing the property values of an instance (object) of a

 class will not affect the property values of other instances of the

 class.

Inheritance:

 Inheritance is one of the most important concepts in OOP, and is

 responsible for much of its power. A sub-class inherits all the

 methods and properties of its super-class, then goes on to add its own

 distinct properties and methods, or to modify an inherited method from

 its super-class. We might define the class ElevatorDoor as a sub-

 class of the class Door. It would thus inherit the properties of Door

 but would add a property to tell whether the light associated with the

 door is on or off. It would also inherit Door's methods, but would

 modify the open method to not only change the state of the ElevatorDoor

 to open, but also to change the state of the light property to on.

 All other methods work just the same as for the Door class.

Self:

 Often, an object needs to invoke one of its own methods, without really

 knowing who it is (it may be executing code inherited from its super-

 class). This is done by sending a message to the object self, which is

 always the object which invoked the current method.

Super:

 An important factor in using inheritance to define new methods is being

 able to get access to the super-class's code for a method within the

 newly defined method. The class super is provided for this purpose --

 sending a message to class super invokes the method within the super-

 class of self, rather than the method within self. Thus, the open

 method for the class ElevatorDoor might contain the code

 (super open:)

 (= lightState on)

 which calls upon the open method of the class Door to do its stuff,

 then sets the light state to on.

 A Note on Naming

There are a number of conventions which are normally (but not universally)

followed in naming things in object oriented programming. Properties, being

data, usually have names which are nouns; methods, being actions on data,

usually have names which are verbs; classes and instances, which may

represent either concrete objects or actions, may have either nouns or verbs

as names.

The first letter of property, method, and instance names is lowercase,

whereas the first letter of class name is uppercase. In both types of

names, succeeding words in the names are set off in the name by capitalizing

the first letter of the word, e.g. AutomaticDoor or elevatorDoor.

 Classes

 Defining Classes

The first step in any object-oriented programming project is to define the

classes which will be used in the project. Generally there is already a

large library of classes to draw on (in this case the classes documented in

Script Classes for Adventure Games), and often these classes are all one

will need in the project. However, in order to define new classes and to

understand the old ones, it is necessary to understand the class statement

for defining a class.

The form of the class statement is:

 (class aClass kindof superClass

 (properties

 aProperty value

 ...

)

 (methods

 aMethod

 ...

)

 (method (aMethod [p1 p2 ...] [&tmp t1 t2 ...])

 code

)

 ...

 [(procedure ...)]

)

This statement defines aClass as a sub-class (kindof) superClass. This

means that it inherits all of superClass' properties and methods, and will

either modify or add to them. In order for the sc compiler to compile this

class definition, superClass must either have been defined earlier in the

current source file or in another file which will be compiled before this

file will be compiled, adding the super-class definition to the file

classdef (more on this at the end of this section).

The properties section of the class statement is where new properties are

introduced and old default property values redefined. All entries in this

section are of the form aProperty value where aProperty is a symbol and

value is a constant expression. If aProperty is not a property of

superClass, it is added as a new property in the class being defined and its

default value is value. If the property exists in superClass, its default

value for the class being defined is just changed to value.

The methods section of the class statement lists any symbols which will be

the names of methods added to superClass to create the class being defined.

Listing a method which is already defined in superClass does nothing, and a

method name need not be listed in the methods section if it is only being

redefined.

The method statement in the class statement is almost identical to the

procedure statement described in The Script Programming Language. It

differs in that the properties of the class in which the method is defined

can be accessed as if they were variables, i.e. by simply using their names.

Also, code in a method definition is the only place in which sends to the

objects self and super are valid. Only methods inherited from the super-

class or listed in the methods section may be defined. As in procedures,

the compiler-defined variable argc gives the number of parameters passed to

the method.

Note that procedures may also be included in a class statement. These

procedures can be used by the methods defined within the class, but cannot

be accessed from outside the class definition.

 Compiling Classes

Source files containing class definitions are compiled with the sc compiler

just like any other source file. There are some subtleties involved where

class definitions are concerned, however, arising from the fact that all

sub-classes of a class must be defined after the class' definition. Thus

the order of source file compilation is very important -- the files

containing the lowest level classes (such as Object) must be compiled first,

followed by successive sub-classes. An understanding of how the compiler

maintains information on all the classes will clarify how the class

compilation process works.

Two files, classdef and selector constitute the database in which the

compiler tracks the classes being defined. The first thing that the

compiler does when compiling a file is to read in the file selector, which

defines the symbols which are known to be selectors and the selector numbers

corresponding to them. From this it also obtains the largest selector

number currently defined, which will mark the point from which it will

assign new selector numbers when they are needed. If you are compiling on a

network, this file will be locked when you start compiling. This prevents

anyone else from starting a compile (and possibly changing the information

in the database) while you are using it.

The compiler next reads the file classdef (if it exists), from which it

obtains information about the classes which have already been compiled. The

information in classdef includes the class number (assigned by the

compiler), the number of the script in which it is defined, the class number

of the class' super-class, the names of the class' methods, and the names of

the class' properties with their default values.

The compiler now gets around to reading your source code. As the compiler

encounters each class definition, it records in its class symbol table the

characteristics of the class. If the class already has an entry in the

symbol table because it has been previously defined, that entry is cleared

and the class is redefined using the current source code. This guarantees

that the compiler is always using the most current class definition.

The class definition is built from the information contained in the methods

and properties sections -- the selectors encountered here are added to those

inherited from the class' super-class to arrive at the structure of the

class being defined. Any symbol encountered in a properties or methods

section of a class definition is looked up in a special symbol table for

selectors. If it is not present there, it is entered in the selector table

and assigned the next available selector number. Symbols are also entered

in the selector symbol table if they are undefined symbols encountered in

the position which a selector would occupy in a message to an object.

Assuming that the source file compiles with no errors, the compiler rewrites

classdef and selector from its class and selector symbol tables. On multi-

files compilations this is done after each successful compilation. The

external database is thus kept as up-to-date as possible. Along with these

files, the compiler rewrites classtbl and vocab.001 after each successful

compilation. Classtbl is a table which gives the script number in which

each class is defined, and is used by the kernel to load the appropriate

script when a class is referenced. Vocab.001 is a file which contains the

names of all the selectors in a format which can be used by the kernel to

display selector names in error and debugging messages.

At the start of a project, you start with no classdef file and a selector

file which is a copy of the file selector.new. The latter file contains the

definitions of those selectors which the kernel needs to know about and

which thus must have particular numbers. As you compile files, beginning

with system.sc, the files classdef and selector grow with the addition of

new classes and selectors. This growth is a one-way street, though --

nothing you do to your source code will cause a class or selector to be

removed from these files. Thus, by the end of the project you are likely to

have a number of obsolete classes and selectors hanging around in the

database. To winnow the chaff from these files you should, near the end of

the project, delete classdef, copy selector.new over your existing selector,

and recompile all your files (in the proper order, of course!). This leaves

you with a class/selector database with only those classes and selectors

which you are using.

 Objects

Objects are specific instances of a class, and are defined using the

instance statement:

 (instance anObject of aClass

 (properties

 aProperty: value

 ...

)

 (method (aMethod [p1 p2 ...] [&tmp t1 t2 ...])

 code

)

 ...

 [(procedure ...)]

)

This defines anObject as an instance of class aClass. The properties and

method statements are optional and are used to over-ride the default values

and methods inherited from aClass.

The ID of an object or a class is what tells the sci kernel where to send

messages. The object ID is obtained by simply writing the object's name

wherever an expression is valid -- it can be assigned to a variable or

passed as a parameter to a procedure. Thus, if we define egoObj as an

instance of class Ego,

 (instance egoObj of Ego)

we can assign the ID of egoObj to the global variable ego:

 (global ego 0)

 (= ego egoObj)

Once this has been done, the following two expressions are equivalent:

 (ego x?)

 (egoObj x?)

To find the distance from the object ego to the object wolf, we can pass

the wolf's ID as an argument to ego's distanceTo: method:

 (ego distanceTo: wolf)

Any unknown symbol encountered in a compilation is assumed to be the ID of

some object which is to be defined later in the source file. If no object

with the symbol as its name is encountered by the end of the file, an error

will be raised.

 Sending Messages

The syntax for sending a message to an object is identical to that for a

procedure call. The object name (or an expression which evaluates to an

object ID) is followed by the message selector and any parameters, all

enclosed in parentheses. There are three different kinds of messages which

can be sent to objects:

Setting a property:

 A property of an object can be set by sending a message whose message

 selector is the name of the property followed by a colon (':') followed

 by the new value of the property:

 (ego x:23) or (ego x: 23)

 sets the x property of ego to 23.

Requesting the value of a property:

 The value of a property can be obtained by sending a message with no

 parameters whose message selector is the name of the property followed

 by a question mark ('?'):

 (ego x?)

 will return the value of the x property of ego.

Invoking a method:

 A method of an object can be invoked by sending a message with any

 number of parameters whose message selector is the name of the method

 followed by a colon (':'):

 (ego moveTo: x y) or (ego moveTo:x y)

 tells ego to move to coordinates x and y by invoking the moveTo method

 of ego.

Any number of messages can be sent in one fell swoop:

 (ego

 x:50

 y:50

 setMotion: MoveTo 100 100

 setCycle: Reverse self

)

will position ego at coordinates (50, 50), start him moving to coordinates

(100, 100), and set him to cycle in reverse cel order. When multiple

messages are sent to an object, the messager in the kernel sends them one at

a time in left to right order. In multiple message sends, all parameters

are evaluated before the messages are sent.

An Extended Example

The only way to really understand OOP is not to read about it, but to dive

into an example and get a feel for how it is used (or better yet to actually

write code!). The following extended example goes through the development

of a new class, the AutomaticDoor, for adventure games. Before continuing,

it is advisable to read through Script Classes for Adventure Games in order

to become familiar with the classes upon which the AutomaticDoor is built.

The AutomaticDoor concept was inspired by Space Quest, in which there are

lots of doors which open whenever ego gets near them and close when he

moves away. We would like the doors to do this by themselves, like good

automatic doors, rather than having to explicitly write code in each room

which checks ego's position, remembers whether the door is open or closed,

opens or closes the door, etc.

The first step in defining a class is conceptual -- determining what the

class represents and thus what properties and methods it should have in

order to carry out its role in the scheme of things.

We'll say that a door is a subclass of the Actor class, since it will be an

object visible on the screen. A door goes somewhere, so it should have an

entranceTo property which tells us which room is on the other side of the

door. The door may or may not be locked, so we'll need a locked property to

keep track of this, along with a key property which is the ID of a key

object which locks or unlocks the door. Doors generally make some sort of

noise when opening and closing, so we'll add openSnd and closeSnd as

properties to tell us what sound the door makes. Then there is the question

of keeping track of whether the door is opening, open, closing, or closed.

This state will be kept in the property doorState. Finally, since this is

an automatic door, it will need some way of telling when an Actor is near

enough to cause it to open. This will be dealt with by an object of class

Code, whose ID will be kept in the actorNearBy property.

This gives us the beginnings of the class statement:

 (class AutomaticDoor kindof Actor

 (properties

 entranceTo 0

 locked FALSE

 key 0

 openSnd 0

 closeSnd 0

 doorState 0

 actorNearBy 0

)

)

We'll need symbolic definitions for the state of the door:

 (enum

 doorOpen

 doorOpening

 doorClosed

 doorClosing

)

To this we now need to add the methods section. The methods are the things

we wish to have the door do. Thus, we will want methods open and close, as

well as lock and unlock:

 (methods

 open ;open the door

 close ;close the door

 lock ;lock the door

 unlock ;unlock the door

)

We'll start with the init: method (inherited from Prop), which adds the door

to a room when we first enter the room. This should handle having the door

be open if it is the door to the room which we have come from and closed

otherwise.

 (method (init &tmp doorState)

 (= doorState

 (if (== prevRoomNum entranceTo)

 ;We just came from the room to which this door

 ;is an entrance -- the door should be open.

 doorOpen

 else

 ;We didn't come through this door -- have

 ;it closed.

 doorClosed

)

 ;Set the cel based on whether the door is open or closed. This

 ;assumes that cel 0 is the cel with the door entirely closed.

 (= cel

 (if (== doorState closed)

 0

 else

 (- (NumCels view loop) 1)

)

)

 ;Pass the initialization along to the super-class to add the

 ;door to the cast, etc.

 (super init:)

 ;Stop updating the door, to reduce the burden on the animation

 ;system.

 (self stopUpd:)

)

Note that we have not added the actorNearBy code at this point -- that will

be specific to each door.

We now want methods to open and close doors. They should know enough not to

try opening a locked door or one which is either already opened or opening.

Also, if a door-opening sound has been defined for the door (by putting a

the object ID of a Sound in openSnd), that sound should be played as the

door opens. The same goes for the door closing.

 (method (open)

 (if (and (! locked)

 (!= doorState doorOpening)

 (!= doorState doorOpen)

)

 ;If the door is not opened or opening, start it doing so by

 ;having it cycle to the end of its loop. When it is done,

 ;the cycle instance will cue us.

 (= doorState opening)

 (self setCycle: EndLoop self:)

 (if openSnd

 (openSnd doit:)

)

)

)

 (method (close)

 ;We don't have to worry about the door being locked,

 ;since in that case it wouldn't be open.

 (if (and

 (!= doorState closing)

 (!= doorState closed)

)

 (= doorState closing)

 (self setCycle: BegLoop self)

 (if closeSnd

 (closeSnd doit:)

)

)

)

When either the EndLoop or BegLoop cycle type initiated by open or close is

done, the cycle class will cue the door. The cue method must thus handle

the change from doorOpening to doorOpen and from doorClosing to doorClosed:

 (method (cue)

 (= doorState

 (if (== doorState doorOpening) doorOpen else doorClosed)

)

 (self stopUpd:)

)

Note that we stop updating the door when it is no longer cycling in order to

reduce the load on the animation system.

Locking and unlocking the door may be done by anyone who has the key to it.

Though not in the class system yet, each Actor will have a has: method which

will test to see if the Actor has a certain inventory object. We use this

to define the lock and unlock methods, which take the Actor who is trying

to do the action as a parameter. Note the use of a common procedure to

exploit the similarities in code:

 (method (lock who)

 (DoLock who TRUE)

)

 (method (unlock who)

 (DoLock who FALSE)

)

 (procedure (DoLock who newLockState)

 (if (who has: key)

 (= locked newLockState)

 else

 (Print "You don't have the proper key!")

)

)

Remember that the property key has the ID of the object which is the key to

this door.

Since the init: method of the door has added the door to the cast, the door

will be sent the doit: message during each animation cycle. This is the

ideal place to hook in the check to see if the door should be opened or

closed. The door will check to see if any Actor is near enough (as defined

by a TRUE return from the code whose ID is in actorNearBy), and if so will

invoke the open: method. Otherwise, it will invoke the close: method. Note

that since these methods already check to see if the given operation is in

progress or is completed, we can invoke them blindly without creating any

problems.

 (method (doit)

 ;If there is no test for a nearby actor, don't try to test.

 (if (== actorNearBy 0) (return))

 ;See if anyone is near.

 (if (cast firstTrue: #perform: actorNearBy)

 (self open:)

 else

 (self close:)

)

)

The test in this method works in the following way: we tell each member of

the cast to perform: the code whose ID is in actorNearBy. If any member of

the cast returns TRUE from this code, the firstTrue: method will end and

return the ID of that member. If no member returns TRUE, firstTrue: will

return NULL. Thus the conditional statement will be TRUE if any element of

the cast returns TRUE to the code in actorNearBy. The general structure for

this code (each door will have its own specific test for nearness) is:

 (instance nearByTest of Code

 (method (doit theObj)

 (return

 code to test the nearness of the Actor

)

)

)

Now that the methods have been defined for the AutomaticDoor class, we can

use it to define doors in any room in the game. Say we're in a room which

has two doors (like the starting room of Space Quest). The first is a face-

on door to a closet, which we'll call closetDoor. Since it's face-on and

there are no obstructions, we'll use a simple position check to see whether

ego is near it:

 (instance closetDoor of AutomaticDoor

 ;Set the initial position of the object and

 ;say that it opens into the closet.

 (properties

 x:100

 y:60

 view:vClosetDoor

 entranceTo:closet

 actorNearBy:nearCloset

)

)

 (instance nearCloset of Code

 (method (doit theObj)

 (return

 (and

 (< x (theObj x?))

 (> (+ x (CelWide view loop cel)) (theObj x?))

 (< (abs (- y (theObj y?))) 10)

)

)

)

)

The code in nearCloset checks to see if the object's x position is within

the bounds of the door and whether it is within 10 pixels of the door

vertically. If all the above are true, it returns TRUE.

The second door will be an entrance to a secret room. Let's say that the

room is so messy near the door that the only easy way to tell if ego is near

it is to draw some control into the picture and see if ego is on the

control. Also, since the room to which this door leads is secret, we'll

need the cardKey object to unlock the door.

 (instance secretDoor of AutomaticDoor

 (properties

 x:10

 y:80

 entranceTo:secretRoom

 locked:TRUE

 key:cardKey

 actorNearBy:nearSecretDoor

)

)

 (instance nearSecretDoor of Code

 (method (doit theObj)

 (return

 (OnControl theObj secretControl)

)

)

In the room code, we add the doors during the initialization phase:

 (method (init)

 ...

 (closetDoor init:)

 (secretDoor init:)

 ...

)

 (if (Said 'lock / door')

 (cond

 ((closetDoor actorNearBy: ego)

 (closetDoor lock:)

)

 ((secretDoor actorNearBy: ego)

 (secretDoor lock:)

)

 (else

 (Print "You're not near a door!")

)

)

)

 (if (Said 'unlock / door')

 (cond

 ((closetDoor actorNearBy:)

 (closetDoor unlock:)

)

 ((secretDoor actorNearBy:)

 (secretDoor unlock:)

)

 (else

 (Print "You're not near a door!")

)

)

)

We use the door's own actorNearBy check to see if ego is close enough to

open the door.

Thus concludes our excursion into Object Oriented Programming. The idea

behind this style of programming is to create abstractions of the things you

are modeling, decide how all these classes are related, and set up a

hierarchy of super- and sub-classes which encapsulates these relationships.

In the classes are hidden the methods which do things to objects which are

instances of the classes, and the properties, which are the defining

characteristics of the class. Objects are then instances of a given class

which have particular values for the properties and may even have different

methods for implementing a certain concept.

What all this setup gives you is the ability in your code to say

 (secretDoor unlock:)

to unlock a door, rather than having to write the code in-line or writing an

unlock routine which needs to handle all the possible cases of doors which

occur in the game.

Enjoy.

 Index

class . 6

class statement . 8

classdef . 9

inheritance . 7

instance . 6, 11

kindof . 8

message . 6, 12

messager . 12

method . 6, 8, 9, 11

 invoking . 12

methods . 8, 9

naming . 7

object . 6

procedure . 8, 11

properties . 8, 11

property . 6

 requesting . 12

 setting . 12

selector . 6, 9

self . 7

sub-class . 6

super . 7

super-class . 6

